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Stochastic Control: Challenges

@ Potential difficulties:
@ Stochastic nature of dynamics
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Stochastic Control: Challenges

@. Potential difficulties:

@ Stochastic nature of dynamics
@ Lack of mathematical models
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Data-Driven Analysis with Provable Guarantees

.Z'+
Black Box o . :.
Sampled Data
‘ ﬁ ot Safety Specification

Controller
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Data-Driven Analysis with Provable Guarantees

@. Closed-form models: not available or too e
complex to deal with Black Box BT

@ Model-based techniques cannot be useful

. . ® e ‘e .. . I
Sampled Data

“Essentially,
all models are wrong,
but some are usefitl.”

George Box
Statistician
1919-2013

i Safety Specification

Controller
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Data-Driven Control: Indirect vs. Direct Methods

Data System Controller
Identification Analysis

@ Indirect data-driven techniques: System identification followed by model-based methods
@ Two-level computational complexity
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Data-Driven Control: Indirect vs. Direct Methods

Direct Data-Driven Analysis

| l

System Controller
Data Identification Analysis

@. Indirect data-driven techniques: System identification followed by model-based methods
@ Two-level computational complexity

@ Direct data-driven techniques: Directly employ system measurements
@. More samples for robustness guarantees

Rl Data-Driven Stochastic Control via Non-i.i.d. Trajectories: Foundations and Guarantees CDC2025 Workshop ~ 4/21



Direct Data-Driven Control: Scenario-based vs. Trajectory-based Approaches

Scenario-based Approach

@ i.i.d. samples
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Direct Data-Driven Control: Scenario-based vs. Trajectory-based Approaches

Scenario-based Approach Trajectory-based Approach

@ i.i.d. samples @. One set of (non-i.i.d.) time-series data

ity Data-Driven Stochastic Control via Non-i.i.d. Trajectories: Foundations and Guarantees CDC2025 Workshop ~ 5/21



Direct Data-Driven Control: Scenario-based vs. Trajectory-based Approaches

Scenario-based Approach Trajectory-based Approach

Q@ i.i.d. samples @. One set of (non-i.i.d.) time-series data

Question of interest

How to design safety controllers with probabilistic confidence using trajectory-based approaches for stochastic
control systems with unknown models?
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Discrete-time Nonlinear Polynomial Systems (dt-NPS)

—  Unknown Y +—

Y:zt = f(z) +g(x)u+s
@ ze XCR"andue U CR™
@ f: X —> Xandg:R® — R™™
@ ¢ <€ Z CR", where |s]|< w € RE
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Discrete-time Nonlinear Polynomial Systems (dt-NPS)

_z
2L Unknown Y .
<
T:zt = f(z)+ g(z)u+s Y:2" = AF(z) + BG(z)u +¢
@ xc XCR"andu €U CR™ @ AcR"™ and B € R™*?
@ f:X — Xandg:R" — R™™ @ F(z) € RY, with F(0,) =0,
@ ¢ € Z CR", where |[¢]|< w € R} @ G(z) € RI*™
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Discrete-time Nonlinear Polynomial Systems (dt-NPS)

_z
2L Unknown Y .
<
T:zt = f(z)+ g(z)u+s Y:2" = AF(z) + BG(z)u +¢
@ xc XCR"andu €U CR™ @ AcR"™ and B € R™*?
@ f:X — Xandg:R" — R™™ @ F(z) € RY, with F(0,) =0,
@ ¢ € Z CR", where |[¢]|< w € R} @ G(z) € RI*™

> A and B are unknown
> F(z) and G(x): Access to extended dictionary (i.e., library or family of functions)

Newcastie
uites

iy Data-Driven Stochastic Control via Non-i.i.d. Trajectories: Foundations and Guarantees CDC2025 Workshop ~ 6/21



Robust Control Barrier Certificates (R-CBC) & Robust Safety Controller (R-SC)

R-CBC and R-SC!
Consider a dt-NPS T with X,,, Xs C X. Suppose
there exist B: X — R{ and n, 6, p € RT, with § > 7,
and x € (0, 1), such that:
Q. Vze Xs: B(z) >0,
@ VzeX ={zeX:B(z)<d},uel,
such that Vs € Z:
B(AF(x) + BG(x)u + <) < xB(x) + plls|*

v,

el Data-Driven Stochastic Control via Non-i.i.d. Trajectories: Foundations and Guarantees

X : State space

er certificate

[1] O. Akbarzadeh, M.H. Ashoori, and A. Lavaei, “Learning Robust Safety
Controllers for Uncertain Input-Affine Polynomial Systems", CDC 2025.
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Robust Control Barrier Certificates (R-CBC) & Robust Safety Controller (R-SC)

R-CBC and R-SC!
Consider a dt-NPS T with X,,, Xs C X. Suppose
there exist B: X — R{ and n, 6, p € RT, with § > 7,
and x € (0, 1), such that:
Q. Vze Xs: B(z) >0,
@ VzeX ={zeX:B(z)<d},uel,
such that Vs € Z:
B(AF(x) + BG(x)u + <) < xB(x) + plls|*

pww < 0(1 — k),
then z,,,., (k) ¢ X5 forany zo € Xo and k € N
under signals u(-) and g(-).

v,

Yomerste Data-Driven Stochastic Control via Non-i.i.d. Trajectories: Foundations and Guarantees

X : State space

er certificate

[1] O. Akbarzadeh, M.H. Ashoori, and A. Lavaei, “Learning Robust Safety
Controllers for Uncertain Input-Affine Polynomial Systems", CDC 2025.
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Data-Driven Design of R-CBC and R-SC

Newcastie
ORlversity

z(1) z(2) ... z(T)]
z(0) 2(1) (T —1)]
w(0) w(l) ... w(T-1)]
s(0) <(1) ... (T —-1)]
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Data-Driven Design of R-CBC and R-SC

o X =[a(l) 2(2) 2(T)]

@ X=[z(0) =z(1) z(T —1)] @ F=[F(z(0)) F(z(1)) ... F(z(T-1))]

@ U=[u(0) u(l) (T — 1)] o G=[G(@(0)u(0) Gla(L)u(1) ... G(a(T—1)u(T—1)]
0 Z=1[(0) (1) o(T = 1)]
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Data-Driven Design of R-CBC and R-SC

@ X =[z(1) z(2) ... z(T)]

@ X=[z(0) (1) 2(T = 1)] @ F=[F(2(0)) F(z(1)) ... F(zx(T—1)]

@ U=[u0) u(l) ... u(T—1) @ G=[G(x(0)u(0) G(z(1)u(l) ... Gx(T—1)u(T—1)]
@ Z=[(0) <(1) ... oT—1)]

> R-CBC: B(z) =2 Pz
> Robust Safety Controller: v = K(z)z
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Data-Driven Design of R-CBC and R-SC

@ X =[z(1) z(2) ... z(T)]

@ X=[z(0) (1) 2(T = 1)] @ F=[F(2(0)) F(z(1)) ... F(zx(T—1)]

@ U=[u0) u(l) ... u(T—1) @ G=[G(x(0)u(0) G(z(1)u(l) ... Gx(T—1)u(T—1)]
@ Z=[(0) <(1) ... oT—1)]

> R-CBC: B(z) =2 Pz
> Robust Safety Controller: v = K(z)z

X;=AF; +BG; +Z;=®H; +Z;, j€{1,....,T} where ®=[A B, H’:{EJ}
Dzj:Yj—q)Hj
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Data-Driven Design of R-CBC and R-SC

@ X =[z(1) z(2) ... z(T)]

@ X=[z(0) (1) 2(T = 1)] @ F=[F(2(0)) F(z(1)) ... F(zx(T—1)]

@ U=[u0) u(l) ... u(T-1) @ G=[G(z(0)u(0) G(x(1)u(1) (z(T—1)u(T-1)]
@ Z=[(0) <(1) ... oT—1)]

> R-CBC: B(z) =2 Pz
> Robust Safety Controller: v = K(z)z

E.
Yj:AFj-FBGj-FZj:CI)Hj-FZj,jG{l,...,T} where d=[A B, Hj=|:G; :|
> Zj :Yj—<I>Hj
z,z] <=°L,
-
Y? —w?, —XHT| [ In
> (X; = ®H)(X; — oH)T — =L, <0 — [ o7 ] { H]-JHJTJ] [ o7 | 30
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Data-Driven Design of R-CBC and R-SC: Main Result

Main Result: R-CBC and R-SC Design

Given an unknown dt-NPS 7, let there exist 7, 6, € RT, with 7 > §, € (0, 1), matrices P > 0 and K(z), and
aj=1,. r(z): R* = RY, such that

Q. P —fjzyz, =0, Vr € X, with X, C {z € R™ zz' < 2y2,, z; €R"},

@ P —0z52) =0, Vz € X5, with X5 C {z € R™ x| = 2528, z5 € R™},

—KkP 0 0
J(z)P i RPC 0
) ~ 3T < X
Qe |: * 0 [ G()K() ijlaj(x) . 0 =0, Vz € X,
R A

i T

el RDCj: ?]‘Yj —WQ]ITL —?]‘H; )
* H,H;
A
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Data-Driven Design of R-CBC and R-SC: Main Result

Main Result: R-CBC and R-SC Design

Given an unknown dt-NPS 7, let there exist 7, 6, € RT, with 7 > §, € (0, 1), matrices P > 0 and K(z), and
aj=1,. r(z): R* = RY, such that

Q. P —fjzyz, =0, Vr € X, with X, C {z € R™ zz' < 2y2,, z; €R"},
@ P —0z52) =0, Vz € X5, with X5 C {z € R™ x| = 2528, z5 € R™},
-kP 0 0
J(z)P i RPCi 0
) 37 o < X
) { : O [ G(z)K(z) 2= @) |, of 3% VEEX
© o x —+wP
i T
el RDCJ ?]‘Yj —WQ]In —?]‘H;
* H,H;

Then, B(z) = x" Pz,with P = P!, and u = K(z)z, with K(z) = K(z) P~ = K(x)P. In addition, n = 77!,
6 =061 (wheren < d),and p = (1+ =) ||V/P|>

s
-t
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Discrete-time Nonlinear Polynomial Systems (dt-SNPS)

_r
U Unknown Y N
S
Y:zt = AF(z) + BG(z)u +¢
@ AeR"™ and B € R"¢ e (Q,Fq,Pq)
Q. F(z) € R, with F(0,) =0, @ ¢:={c(k): Q =V, keN}
@ G(x) eRT™ @ pup’ T, ,and ¥ < Ty
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Discrete-time Nonlinear Polynomial Systems (dt-SNPS)

_r
U Unknown Y N
S
Y:zt = AF(z) + BG(z)u +¢
@ AeR"™!and B € R**¢ e (Q,Fq,Pq)
Q. F(z) € R, with F(0,) =0, @ ¢:={c(k): Q =V, keN}
@ G(x) eRT™ @ pup’ T, ,and ¥ < Ty

> A and B are unknown

> F(z) and G(x): Access to extended dictionary (i.e., library or family of functions)
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Stochastic Control Barrier Certificates (S-CBC) & Safety Controller

S-CBC and Safety Controller?

Consider a dt-NPS T with X,,, X5 C X. Suppose
there exist B: X — R{ and n, 6,1 € R, with § > 1,
and x € (0, 1), such that:

Q Ve X!
@ Vxe Xy
Q@ Vze X, Ju € U, such that:

E [B(Af(m) + BG(z)u+q) | o, u] < kB(z) + .

Data-Driven Stochastic Control via Non-i.i.d. Trajectories: Foundations and Guarantees

X : State space

X, : Initial set
e set

B : Barrier ce

ertificate

[2] A. Lavaei, “Data-Driven Stochastic Control via Non-i.i.d. Trajectories:
Foundations and Guarantees", IEEE TAC, under review, 2025.
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Stochastic Control Barrier Certificates (S-CBC) & Safety Controller

S-CBC and Safety Controller?

Consider a dt-NPS T with X,,, X5 C X. Suppose
there exist B: X — R{ and n, 6,1 € R, with § > 1,
and x € (0, 1), such that:

Q Ve X!
@ Vxe Xy
Q@ Vze X, Ju € U, such that:

E [B(Af(m) + BG(z)u+q) | o, u] < kB(z) + .

Then:
IP{aczou ¢ X, forall ke [0, T] | 960} >1-—p,
where 3, = H%T

iowcastle

cz

Data-Driven Stochastic Control via Non-i.i.d. Trajectories: Foundations and Guarantees

X : State space
X, : Initial set

e set.
B : Barrier certificate

[2] A. Lavaei, “Data-Driven Stochastic Control via Non-i.i.d. Trajectories:
Foundations and Guarantees", IEEE TAC, under review, 2025.
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Data-Driven Design of S-CBC and Safety Controller

Forallie {1,2,...,N}:
o X =[(1) 2(2) ... 2(T)
(

@ X'=[z(0) 2(1) ... 24T -1)]
@ U =[u0) ul) .. uT-1)
@ Z'=["0) <'(1) ... {T-1)
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Data-Driven Design of S-CBC and Safety Controller

Forallie {1,2,...,N}:

X' = #(1) 4(2) ... @(T)]

Xt =[z(0) (1) ... 24T —1)] @ F'=[F(z(0)) F(z'(1)) ..
U=[©) ul) ... uT-1) @ G'=[G(z(0)u(0) G(a
Z'=[(0) <'(1) ... (T-1)

Newcastie
Onlversity
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i

D)u(1) ...

. F(2H(T-1))]
Gz (T-1)u(T-1))]
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Data-Driven Design of S-CBC and Safety Controller

Forallie {1,2,...,N}:

o X =[z(1) 22 ... zi(T)

@ X'=[z(0) 2(1) ... 24T -1)] @ F'=[F(z(0)) F(z(1)) ... F(z"(T—-1)))

@ U =[u0) ul) ... uT-1) Q. G'=[G(z(0)u(0) G(x*(1)u(l) ... G(a (T—1)u(T—-1))]
@ Z'=["0) <'(1) ... {T-1)

Problem of interest
Given an unknown dt-SNPS with process noise ¢, design an S-CBC and its safety controller, while quantifying
the probabilistic safety level 5, € (0, 1] and confidence level 8, € (0, 1] purely based on data, i.e.,

]P{IP{TFS}Zl—ﬂl}Zl—BQ.
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Data-Driven Design of S-CBC and Safety Controller

IE[«T] =S+pup’ <Tg+T,

Newcastie
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Data-Driven Design of S-CBC and Safety Controller

IE[«T] =S+pup’ <Tg+T,

Lemma 1: Formalizing Empirical Approximation

LetZ{,,...,Z{) € R" be N independent samples drawn from s € R, where uu” < T\, and £ < T's.. Then

N
! i 7T T _
P<HN ZZ(')Z(-) — E[ss ]H < e) >1— B,
i=1

with B2 = 2 (Tr(T%) + (Tr(T's)? 4 2Amax(Us) Tr(Ty) 4+ 2 Tr(I's) Tr(I')).

Newcastie
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Data-Driven Design of S-CBC and Safety Controller

IE[«T] =S+pup’ <Tg+T,

Lemma 1: Formalizing Empirical Approximation

Let Z%,), .. ,Zf\,’) € R™ be N independent samples drawn from ¢ € R, where up' < T, and ¥ < I's. Then

N
! i ZiT T _
P(HN ZZOZ(-) — E[cs ]H < e) >1— B,
=1

with B2 = 2 (Tr(T%) + (Tr(T's)? 4 2Amax(Us) Tr(Ty) 4+ 2 Tr(I's) Tr(I')).

Lemma 2: Data-Conformity Constraint

|

Under Lemma 1, the following statement holds true with a confidence of at least 1 — 3»:

N
=1

Data-Driven Stochastic Control via Non-i.i.d. Trajectories: Foundations and Guarantees CDC2025 Workshop ~ 13/21
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Data-Driven Design of S-CBC and Safety Controller

IE[«T] =S+pup’ <Tg+T,

Lemma 1: Formalizing Empirical Approximation

Let Z%,), .. ,Zf\,’) € R™ be N independent samples drawn from ¢ € R, where up' < T, and ¥ < I's. Then

N
! i ZiT T _
P(HN ZZOZ(-) — E[cs ]H < e) >1— B,
=1

with B2 = 2 (Tr(T%) + (Tr(T's)? 4 2Amax(Us) Tr(Ty) 4+ 2 Tr(I's) Tr(I')).

Lemma 2: Data-Conformity Constraint

Under Lemma 1, the following statement holds true with a confidence of at least 1 — 3»:

N
=1

T N 1 iT
— ]I?r %Zi:leYj —(Ps+Tyu+eln) 7% > gy
o " LS HIHET

Data-Driven Stochastic Control via Non-i.i.d. Trajectories: Foundations and Guarantees CDC2025 Workshop ~ 13/21
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Data-Driven Design of S-CBC and Safety Controller: Main Result

Main Result: S-CBC and Safety Controller Design

Given an unknown dt-NPS T, let there exist 7, 8, € R, with 7 > §, x € (0, 1), matrices P = 0 and K(z), and
aj-1,..r(z): R" — RY, such that

Q P —nzyz,) =0, Vr € X, with X, C{z €R™ a2z’ < z,2,, 2, € R"},
@ P— 57:525 =<0, Vz € X5, with X5 C {z € R™ xz!| = 25,2;—, zs €R"},
0
J(z)P T RPC 0
[ Gk () =i a5(@) . ol 20, Vz € X,
—(L+p) P
with i —iT i ;
O %Zi?ij —(Is+Tu+teln) - 2117_1“? , where Hi=| i |.
* ¥ s HiHG <
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Data-Driven Design of S-CBC and Safety Controller: Main Result

Main Result: S-CBC and Safety Controller Design

Given an unknown dt-NPS T, let there exist 7, 8, € R, with 7 > §, x € (0, 1), matrices P = 0 and K(z), and
aj-1,..r(z): R" — RY, such that

Q P —nzyz,) =0, Vr € X, with X, C{z €R™ a2z’ < z,2,, 2, € R"},
@ P— 57:525 =<0, Vz € X5, with X5 C {z € R™ xz!| = z(sz(;r, zs €R"},
0
j(.’E)P T , Rch 0
[ Gk ||~ Zm @@ |7 30 WeeX,
—(L+p) P
with i—iT i i
RPC = %Zf\i?]Y] —(Ps+Tyu+eln) -5 Z;], YJH;T , where H= FZ: ;
* & Zi:1H;‘H;‘T €5

Then, B(x) = =" Pz, with P = P~', and u = K(z)x, with K(z) = K(z)P~'. In addition, n =77, § = 5t
(n<d),and ) = (1 + p~ ') Tr(PT,) + Tr(PT's), with a confidence of at least 1 — (2, where 8> = T'3s.

A4

twersty Data-Driven Stochastic Control via Non-i.i.d. Trajectories: Foundations and Guarantees CDC2025 Workshop ~ 14/21



Data-Driven Algorithm

Require: The state set X, extended dictionaries F(z),G(x), and bounds I',, I's,

apbwON =

N o

: Collect YZ,Xﬂ and U, where i€ {1,2,...,N}

: Construct F* and G*

: Initialize the desired € and N, and compute B2

. Initialize x € (0,1) and p € R

: Solve conditions using SeDuMi and SOSTOOLS and compute P = P!, K(z) = K(z)P~! = K(z)P,

n=nt,and§=0"1

: Compute ¢

: Quantify 8, and 8 = TBQ

Ensure S-CBC B(z) = =" Pz, safety controller u = K(z)x, and guaranteed probabilistic safety

P{presizi-a}21-6
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@. Robust vs. Stochastic Analysis. If ¢ € Z = [-0.2,0.2]", then @? = 0.04n (yielding 0.04xT,, in robust
condition). In contrast, if ¢ ~ U(—0.2, 0.2 )", then
N =~

a

_ 2
Bl =5+ " = & 12“) I, + (“;b)annl = %En ~ 0.01331,,

which is, even for n = 1, one-third of the worst-case bound 0.04 (i.e., 66% less conservative).

Data-Driven Stochastic Control via Non-i.i.d. Trajectories: Foundations and Guarantees
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@. Robust vs. Stochastic Analysis. If ¢ € Z = [-0.2,0.2]", then @? = 0.04n (yielding 0.04xT,, in robust
condition). In contrast, if ¢ ~ U(—0.2, 0.2 )", then
N =~

a

Elss'] =S+ pup'

(b—a)

12

2
a+b.o T 0.16 N
L+ (—5=) 1l 5 In ~ 001331,
which is, even for n = 1, one-third of the worst-case bound 0.04 (i.e., 66% less conservative).

Q. Trade-off Between ¢ and B2. Demanding higher accuracy (i.e., smaller €) reduces the confidence level
(1 — B2). This closed-form relation gives a lower bound for N based on e and /3. as

N >

5503 (TH(TE) 4 (TH(T5)” + 2 () Tr(T) + 2 Te(T) Te(T,)

Yomerste Data-Driven Stochastic Control via Non-i.i.d. Trajectories: Foundations and Guarantees
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@. Robust vs. Stochastic Analysis. If ¢ € Z = [-0.2,0.2]", then @? = 0.04n (yielding 0.04xT,, in robust
condition). In contrast, if ¢ ~ U(—0.2, 0.2 )", then
N =~

a

_ 2
Bl =5+ " = & 12“) I, + (“;b)annl = %En ~ 0.01331,,

which is, even for n = 1, one-third of the worst-case bound 0.04 (i.e., 66% less conservative).

Q. Trade-off Between ¢ and B2. Demanding higher accuracy (i.e., smaller €) reduces the confidence level
(1 — B2). This closed-form relation gives a lower bound for N based on e and /3. as
N > I (Tr(T%) + (Tr('s))? + 2Amax (T's) Tr(T,) 4+ 2 Tr(Ts) Tr(T,))
2 €

Multiple Noise Realizations. While N trajectories should be collected to capture the stochastic behavior
of dt-SNPS, the proposed matrix inequality condition needs to be solved only once.
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Discussion (cont.)

@. Infinite-Horizon Guarantees. If noise is multiplicative i.e., ¢ ® z, then ¢ = 0. Accordingly,
IP{(szu ¢ X; forall ke [0,00) | mo} >1- 4,

— 1
where 8; = 7.

Rl Data-Driven Stochastic Control via Non-i.i.d. Trajectories: Foundations and Guarantees CDC2025 Workshop ~ 17/21



Discussion (cont.)

@. Infinite-Horizon Guarantees. If noise is multiplicative i.e., ¢ ® z, then ¢ = 0. Accordingly,

IP{(aczou ¢ X; for all k[0, ) |x0} >1- 4,
where 8; = 7.

@ Stability Analysis. The proposed data-driven method can be naturally utilized to assess other essential
system properties, such as mean-square stability.
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Discussion (cont.)

@. Infinite-Horizon Guarantees. If noise is multiplicative i.e., ¢ ® z, then ¢ = 0. Accordingly,

IP{(aczOu ¢ X; for all k[0, ) |x0} >1- 4,
where 8; = 7.

Stability Analysis. The proposed data-driven method can be naturally utilized to assess other essential
system properties, such as mean-square stability.

@ Limitations.

@ The class of nonlinear systems is restricted to polynomial dynamics.

@ S-CBC is restricted to quadratic, i.e. B(x) = = ' Pz. How about higher-order polynomials
B(z) = F(z) " PF(2)?
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Case Studies

> RT1 RT2 MU
System N T T € FM I's, 51 B2 B2 (sec)  (sec) (Mb)
Lorenz 7 10 100 0.1 03 000613 0.08 5x10"* 0.005 0.01 158 13.54
Chen 328 7 100 02 03 0.008I3 0.05 5x107° 0.00035 0.01 0.74 884
Spacecraft 1283 8 20 0.01 03 0.0075I3 0.07 0.005 0.04 0.03 137 12.73
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Case Studies

> RT1 RT2 MU
System N T T € Tu I's b1 B2 B2 (sec) (sec) (Mb)
Lorenz 77 10 100 0.1 03 0.006I3 008 5x107% 0.005 0.01 1.58 13.54
Chen 328 7 100 0.2 03 0.008I3 0.05 5x107° 0.00035 001 0.74 8.84
Spacecraft 1283 8 20 0.01 03 0.007513 0.07 0.005 0.04 0.03 137 12.73
@. Spacecraft System:
xf = +T(%”-x2x3 + J%'UJ)—FQ
T:<{ 2 =0 +T(J3J_2J1 123 + J%uz) + <2
xd =$3—|—7’(J1;3J2 z1 T2 + %u3)+§3
@. Regions of Interest: X = [-10,10]?,
X, =[-1,1]%, X5 = [-10,—6]* U [6, 10]*
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Case Studies

3 RT1 RT2 MU
System N T T € F# I's, 51 B2 B2 (sec)  (sec) (Mb)
Lorenz 77 10 100 0.1 03 0.006 I3 0.08 5 x ].074 0.005 0.01 1.58 13.54
Chen 328 7 100 0.2 O3 0.008Is 0.05 5 x 107° 0.00035 0.01 0.74 8.84
Spacecraft 1283 8 20 0.01 03 0.0075I3 0.07 0.005 0.04 0.03 137 12.73

@. Spacecraft System:

+ _ Jo—J: 1
x| —$1+T(T3'1172173+J_1u1)+§1

Y:Q xf =as+ 7 (L0 x1x3+%u2)+§2

Ja2
+

Ji—J.
Ty = a3+ 7 (F52

J3

@. Regions of Interest: X = [—10, 10]?,

X, = [-1,1?, X5 = [-10,-6]* U [6, 10]*

Newcastie
Onlversity

x1x2+%3U3)+§3

Data-Driven Stochastic Control via Non-i.i.d. Trajectories: Foundations and Guarantees

@ Z =[-0.15,0.15]*, accordingly @? = 0.0675
@ TI's + T, + el = 0.017513 (74% smaller in each

entry)
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Simulation Results: Lorenz System

2
—FT] — T3 — T3
1
@
3
=0
3
n
-1
-2
0 20 40 60 80 100
Time steps

@. Designed S-CBC Matrix P:
33450.3 3339.99  656.04
P = [3339.99 38333  1417.8
656.04  1417.8  34290.3

@. Designed Controller:
u=—1.4389 27 — 1.4844 z1z2 — 0.50617 z123 + 1.7463 25 + 0.62559 225 + 0.1802 23

—1.9406 x1 — 28.1245 2 4 0.1565 3
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Simulation Results: Chen System

States
(=1

) 20 40 60 80 100
Time steps

@. Designed S-CBC Matrix P:
65587.8 20628.6  486.86

P = [20628.6 103532  984.94
486.86  984.94 60375.3

@. Designed Controller:
u = 0.016422 2% — 0.12604 z1 22 — 0.48379 z1x3 + 0.0019506 23 + 2.2790 zox3 + 0.030116 23

+4.9195 21 — 32.3368 2 + 0.38473 x3
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Core Insights

@ When robust analysis is feasible, it can be more advantageous, as it ensures safety without introducing
any risk to the system.

@ Otherwise, despite introducing some probabilistic risk, stochastic analysis can be less conservative than
robust analysis.
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Core Insights

@ When robust analysis is feasible, it can be more advantageous, as it ensures safety without introducing
any risk to the system.

@ Otherwise, despite introducing some probabilistic risk, stochastic analysis can be less conservative than
robust analysis.

Future work: Develop physics-informed data-driven techniques? that can significantly reduce the trajectory
horizon

[3] M.H. Ashoori, A. Aminzadeh, A. Nejati, and A. Lavaei, “Physics-Informed Data-Driven Control of Nonlinear Polynomial Systems with Noisy Data", IEEE TAC, under
review, 2025.
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Core Insights

@ When robust analysis is feasible, it can be more advantageous, as it ensures safety without introducing
any risk to the system.

@ Otherwise, despite introducing some probabilistic risk, stochastic analysis can be less conservative than
robust analysis.

Future work: Develop physics-informed data-driven techniques? that can significantly reduce the trajectory

horizon Thank you for your attention!
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[3] M.H. Ashoori, A. Aminzadeh, A. Nejati, and A. Lavaei, “Physics-Informed Data-Driven Control of Nonlinear Polynomial Systems with Noisy Data", IEEE TAC, under

review, 2025.

Newcastie
Onlversity

Data-Driven Stochastic Control via Non-i.i.d. Trajectories: Foundations and Guarantees CDC2025 Workshop ~ 21/21



	Appendix
	Backup




