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Stochastic Control: Challenges

Potential difficulties:
Stochastic nature of dynamics

Lack of mathematical models
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Data-Driven Analysis with Provable Guarantees

Closed-form models: not available or too
complex to deal with
Model-based techniques cannot be useful

u x

Controller

Black Box

x
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x

Sampled Data

Safety Specification
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Data-Driven Control: Indirect vs. Direct Methods

Data
Controller
Analysis

System

Identification

Indirect data-driven techniques: System identification followed by model-based methods
Two-level computational complexity

Direct data-driven techniques: Directly employ system measurements
More samples for robustness guarantees
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Direct Data-Driven Control: Scenario-based vs. Trajectory-based Approaches

Scenario-based Approach

𝑥

𝑥+

i.i.d. samples

Trajectory-based Approach

𝑥1

𝑥2

𝑥3

One set of (non-i.i.d.) time-series data

Question of interest
How to design safety controllers with probabilistic confidence using trajectory-based approaches for stochastic
control systems with unknown models?
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Discrete-time Nonlinear Polynomial Systems (dt-NPS)

ς

x

ΥUnknown
u

x

Υ: x+ = f(x) + g(x)u+ ς

x ∈ X ⊆ Rn and u ∈ U ⊆ Rm

f : X → X and g : Rn → Rn×m

ς ∈ Z ⊆ Rn, where ∥ς∥≤ ϖ ∈ R+
0

Υ: x+ = AF(x) +BG(x)u+ ς

A ∈ Rn×l and B ∈ Rn×q

F(x) ∈ Rl, with F(0n) = 0l

G(x) ∈ Rq×m

▷ A and B are unknown
▷ F(x) and G(x): Access to extended dictionary (i.e., library or family of functions)
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Robust Control Barrier Certificates (R-CBC) & Robust Safety Controller (R-SC)

R-CBC and R-SC1

Consider a dt-NPS Υ with Xη, Xδ ⊆ X. Suppose
there exist B : X → R+

0 and η, δ, ρ ∈ R+
0 , with δ > η,

and κ ∈ (0, 1), such that:

∀x∈Xη: B(x) ≤ η,
∀x∈Xδ: B(x) ≥ δ,
∀x∈X̃ = {x ∈ X: B(x) < δ}, ∃u ∈ U,
such that ∀ς ∈ Z:

B(AF(x) +BG(x)u+ ς) ≤ κB(x) + ρ∥ς∥2.

If
ρϖ ≤ δ(1 − κ),

then xx0uw (k) /∈ Xδ for any x0 ∈ X0 and k ∈ N
under signals u(·) and ς(·).

X

Xη

B(x) ≤ η

X : State space
Xη : Initial set

Xδ : Unsafe set
B : Barrier certificate

δ > η

Xδ

B(x) ≥ δ

B(x) = η

[1] O. Akbarzadeh, M.H. Ashoori, and A. Lavaei, “Learning Robust Safety
Controllers for Uncertain Input-Affine Polynomial Systems", CDC 2025.
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Data-Driven Design of R-CBC and R-SC

−→
X = [x(1) x(2) . . . x(T )]
X = [x(0) x(1) . . . x(T − 1)]
U = [u(0) u(1) . . . u(T − 1)]
Z = [ς(0) ς(1) . . . ς(T − 1)]

F=[F(x(0)) F(x(1)) . . . F(x(T−1))]
G=[G(x(0))u(0) G(x(1))u(1) . . . G(x(T−1))u(T−1))]

▷ R-CBC: B(x) = x⊤Px

▷ Robust Safety Controller: u = K(x)x

−→
X j = AFj +BGj + Zj = ΦHj + Zj , j ∈ {1, . . . , T} where Φ = [A B], Hj =

[
Fj
Gj

]
▷ Zj = −→

X j − ΦHj

ZjZ⊤
j ⪯ ϖ2In

▷ (−→X j − ΦHj)(
−→
X j − ΦHj)⊤ −ϖ2In ⪯ 0 →

[
In

Φ⊤

]⊤ [−→
X j

−→
X

⊤
j −ϖ2In −

−→
X jH⊤

j

∗ HjH⊤
j

] [
In

Φ⊤

]
⪯ 0
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Data-Driven Design of R-CBC and R-SC: Main Result

Main Result: R-CBC and R-SC Design
Given an unknown dt-NPS Υ, let there exist η̄, δ̄,∈ R+, with η̄ > δ̄, κ ∈ (0, 1), matrices P̄ ≻ 0 and K̄(x), and
αj=1,...,T (x): Rn → R+

0 , such that
P̄ − η̄zηz

⊤
η ⪰ 0, ∀x ∈ Xη, with Xη ⊆ {x ∈ Rn: xx⊤ ⪯ zηz

⊤
η , zη ∈ Rn},

P̄ − δ̄zδz
⊤
δ ⪯ 0, ∀x ∈ Xδ, with Xδ ⊆ {x ∈ Rn: xx⊤ ⪰ zδz

⊤
δ , zδ ∈ Rn},

−κP̄ 0 0

∗ 0
[

J (x)P̄
G(x)K̄(x)

]
∗ ∗ −(1 + µ)−1P̄

 −
∑T

j=1 αj(x)
[

RDCj 0
∗ 0

]
⪯ 0, ∀x ∈ X,

with
RDCj =

[−→
X j

−→
X

⊤
j −ϖ2In −

−→
X jH⊤

j

∗ HjH⊤
j

]
.

Then, B(x) = x⊤Px, with P = P̄−1, and u = K(x)x, with K(x) = K̄(x)P̄−1 = K̄(x)P . In addition, η = η̄−1,
δ = δ̄−1 (where η < δ), and ρ = (1 + µ−1)∥

√
P∥2.
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Discrete-time Stochastic Nonlinear Polynomial Systems (dt-SNPS)

ς

x

ΥUnknown
u

x

Υ: x+ = AF(x) +BG(x)u+ ς

A ∈ Rn×l and B ∈ Rn×q

F(x) ∈ Rl, with F(0n) = 0l

G(x) ∈ Rq×m

(Ω,FΩ,PΩ)
ς := {ς(k) : Ω → Vς , k ∈ N};
µµ⊤ ⪯ Γµ and Σ ⪯ ΓΣ

▷ A and B are unknown
▷ F(x) and G(x): Access to extended dictionary (i.e., library or family of functions)

Data-Driven Stochastic Control via Non-i.i.d. Trajectories: Foundations and Guarantees CDC2025 Workshop 10/21



Discrete-time Stochastic Nonlinear Polynomial Systems (dt-SNPS)

ς

x

ΥUnknown
u

x

Υ: x+ = AF(x) +BG(x)u+ ς

A ∈ Rn×l and B ∈ Rn×q

F(x) ∈ Rl, with F(0n) = 0l

G(x) ∈ Rq×m

(Ω,FΩ,PΩ)
ς := {ς(k) : Ω → Vς , k ∈ N};
µµ⊤ ⪯ Γµ and Σ ⪯ ΓΣ

▷ A and B are unknown
▷ F(x) and G(x): Access to extended dictionary (i.e., library or family of functions)

Data-Driven Stochastic Control via Non-i.i.d. Trajectories: Foundations and Guarantees CDC2025 Workshop 10/21



Stochastic Control Barrier Certificates (S-CBC) & Safety Controller

S-CBC and Safety Controller2

Consider a dt-NPS Υ with Xη, Xδ ⊆ X. Suppose
there exist B : X → R+

0 and η, δ, ψ ∈ R+
0 , with δ > η,

and κ ∈ (0, 1), such that:

∀x∈Xη: B(x) ≤ η,
∀x∈Xδ: B(x) ≥ δ,
∀x∈X, ∃u ∈ U, such that:

E

[
B(AF(x) +BG(x)u+ ς) | x, u

]
≤ κB(x) +ψ.

Then:
P

{
xx0u /∈ Xδ for all k∈ [0, T ] | x0

}
≥ 1 − β1,

where β1 = η+ψT
δ

.

X

Xη

B(x) ≤ η

X : State space
Xη : Initial set

Xδ : Unsafe set
B : Barrier certificate

δ > η

Xδ

B(x) ≥ δ

B(x) = η

[2] A. Lavaei, “Data-Driven Stochastic Control via Non-i.i.d. Trajectories:
Foundations and Guarantees", IEEE TAC, under review, 2025.
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Data-Driven Design of S-CBC and Safety Controller

For all i ∈ {1, 2, . . . , N}:
−→
X
i

= [xi(1) xi(2) . . . xi(T )]
Xi = [x(0) xi(1) . . . xi(T − 1)]
U = [u(0) u(1) . . . u(T − 1)]
Zi = [ςi(0) ςi(1) . . . ςi(T − 1)]

Fi=[F(x(0)) F(xi(1)) . . . F(xi(T−1))]
Gi=[G(x(0))u(0) G(xi(1))u(1) . . . G(xi(T−1))u(T−1))]

Problem of interest
Given an unknown dt-SNPS with process noise ς, design an S-CBC and its safety controller, while quantifying
the probabilistic safety level β1 ∈ (0, 1] and confidence level β2 ∈ (0, 1] purely based on data, i.e.,

P

{
P{Υ ⊨ S} ≥ 1 − β1

}
≥ 1 − β2.
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the probabilistic safety level β1 ∈ (0, 1] and confidence level β2 ∈ (0, 1] purely based on data, i.e.,

P

{
P{Υ ⊨ S} ≥ 1 − β1

}
≥ 1 − β2.
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Data-Driven Design of S-CBC and Safety Controller

E

[
ςς⊤

]
= Σ + µµ⊤ ⪯ ΓΣ + Γµ

Lemma 1: Formalizing Empirical Approximation
Let Z1

(·), . . . ,Z
N
(·) ∈ Rn be N independent samples drawn from ς ∈ Rn, where µµ⊤ ⪯ Γµ and Σ ⪯ ΓΣ. Then

P
(∥∥∥ 1

N

N∑
i=1

Zi(·)Z
i⊤
(·) − E[ςς⊤]

∥∥∥ < ϵ
)

≥ 1 − β̄2,

with β̄2 = 1
Nϵ2 ( Tr(Γ2

Σ) + (Tr(ΓΣ))2 + 2λmax(ΓΣ) Tr(Γµ) + 2 Tr(ΓΣ) Tr(Γµ)).

Lemma 2: Data-Conformity Constraint
Under Lemma 1, the following statement holds true with a confidence of at least 1 − β̄2:

1
N

N∑
i=1

Zi(·)Z
i⊤
(·) ⪯ ΓΣ + Γµ + ϵIn

→
[
In

Φ⊤

]⊤
[

1
N

∑N

i=1
−→
X
i

j

−→
X
i⊤
j −(ΓΣ+Γµ+ϵIn) − 1

N

∑N

i=1
−→
X
i

jH
i⊤
j

∗ 1
N

∑N

i=1 HijH
i⊤
j

] [
In

Φ⊤

]
⪯ 0
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Data-Driven Design of S-CBC and Safety Controller: Main Result

Main Result: S-CBC and Safety Controller Design
Given an unknown dt-NPS Υ, let there exist η̄, δ̄,∈ R+, with η̄ > δ̄, κ ∈ (0, 1), matrices P̄ ≻ 0 and K̄(x), and
αj=1,...,T (x): Rn → R+

0 , such that
P̄ − η̄zηz

⊤
η ⪰ 0, ∀x ∈ Xη, with Xη ⊆ {x ∈ Rn: xx⊤ ⪯ zηz

⊤
η , zη ∈ Rn},

P̄ − δ̄zδz
⊤
δ ⪯ 0, ∀x ∈ Xδ, with Xδ ⊆ {x ∈ Rn: xx⊤ ⪰ zδz

⊤
δ , zδ ∈ Rn},

−κP̄ 0 0

∗ 0
[

J (x)P̄
G(x)K̄(x)

]
∗ ∗ −(1 + ρ)−1P̄

 −
∑T

j=1 αj(x)
[

RDCj 0
∗ 0

]
⪯ 0, ∀x ∈ X,

with
RDCj =

[
1
N

∑N

i=1
−→
X
i

j

−→
X
i⊤
j −(ΓΣ+Γµ+ϵIn) − 1

N

∑N

i=1
−→
X
i

jH
i⊤
j

∗ 1
N

∑N

i=1HijH
i⊤
j

]
, where Hij =

[
Fij
Gij

]
.

Then, B(x) = x⊤Px, with P = P̄−1, and u = K(x)x, with K(x) = K̄(x)P̄−1. In addition, η = η̄−1, δ = δ̄−1

(η < δ), and ψ = (1 + ρ−1) Tr(PΓµ) + Tr(PΓΣ), with a confidence of at least 1 − β2, where β2 = T β̄2.
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Data-Driven Algorithm

Require: The state set X, extended dictionaries F(x),G(x), and bounds Γµ,ΓΣ

1: Collect −→
X
i
,Xi, and U, where i∈{1, 2, . . . , N}

2: Construct Fi and Gi

3: Initialize the desired ϵ and N , and compute β̄2
4: Initialize κ ∈ (0, 1) and ρ ∈ R+

5: Solve conditions using SeDuMi and SOSTOOLS and compute P = P̄−1, K(x) = K̄(x)P̄−1 = K̄(x)P ,
η = η̄−1, and δ = δ̄−1

6: Compute ψ
7: Quantify β1 and β2 = T β̄2

Ensure: S-CBC B(x) = x⊤Px, safety controller u = K(x)x, and guaranteed probabilistic safety

P

{
P{Υ ⊨ S} ≥ 1 − β1

}
≥ 1 − β2
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Discussion

Robust vs. Stochastic Analysis. If ς ∈ Z = [−0.2, 0.2]n, then ϖ2 = 0.04n (yielding 0.04nIn in robust
condition). In contrast, if ς ∼ U(−0.2︸︷︷︸

a

, 0.2︸︷︷︸
b

)n, then

E[ςς⊤] = Σ + µµ⊤ = (b− a)2

12 In + (a+ b

2 )2
1n1

⊤
n+ = 0.16

12 In ≈ 0.0133In,

which is, even for n = 1, one-third of the worst-case bound 0.04 (i.e., 66% less conservative).

Trade-off Between ϵ and β̄2. Demanding higher accuracy (i.e., smaller ϵ) reduces the confidence level
(1 − β̄2). This closed-form relation gives a lower bound for N based on ϵ and β̄2 as

N ≥ 1
β̄2ϵ2

( Tr(Γ2
Σ) + (Tr(ΓΣ))2 + 2λmax(ΓΣ) Tr(Γµ) + 2 Tr(ΓΣ) Tr(Γµ)).

Multiple Noise Realizations. While N trajectories should be collected to capture the stochastic behavior
of dt-SNPS, the proposed matrix inequality condition needs to be solved only once.
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Discussion (cont.)

Infinite-Horizon Guarantees. If noise is multiplicative i.e., ς ⊙ x, then ψ = 0. Accordingly,

P

{
(xx0u /∈ Xδ for all k∈ [0,∞) | x0

}
≥ 1 − β1,

where β1 = η
δ

.

Stability Analysis. The proposed data-driven method can be naturally utilized to assess other essential
system properties, such as mean-square stability.

Limitations.
The class of nonlinear systems is restricted to polynomial dynamics.
S-CBC is restricted to quadratic, i.e. B(x) = x⊤Px. How about higher-order polynomials
B(x) = F(x)⊤PF(x)?
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Case Studies

10 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2025

TABLE I: Overview of data-driven results across three stochastic control systems with unknown dynamics. For each system,
runtime for collecting data (RT1), runtime for solving conditions (24) (RT2), and memory usage (MU) are reported. Here, N
is the number of samples used for the empirical average of collected trajectories, T denotes the sample horizon, T is the
safety guarantee horizon, ϵ quantifies the norm distance between E[ςς⊤] and its empirical approximation, β1 indicates the
safety guarantee, β̄2 specifies the (complement of) confidence level associated with the empirical approximation, and β2 is the
(complement of) confidence level associated with the data-driven stochastic approach.

System N T T ϵ Γµ ΓΣ β1 β̄2 β2
RT1
(sec)

RT2
(sec)

MU
(Mb)

Lorenz 77 10 100 0.1 03 0.006 I3 0.08 5× 10−4 0.005 0.01 1.58 13.54

Chen 328 7 100 0.2 03 0.008 I3 0.05 5× 10−5 0.00035 0.01 0.74 8.84

Spacecraft 1283 8 20 0.01 03 0.0075 I3 0.07 0.005 0.04 0.03 1.37 12.73

facilitating the satisfaction of the matrix inequality in (24c). In
the case study, we demonstrate that the robust approach fails
to yield a safety controller under bounded disturbances due to
its inherent conservatism. In contrast, the proposed framework
successfully synthesizes a safety controller that satisfies the
safety constraints with high probability.

Similar benefits hold when assuming other noise distribu-
tions, e.g., normal or exponential. These distributions not only
lead to smaller expected second moments than conservative
worst-case bounds, but they also offer a more realistic rep-
resentation of real-world noise characteristics, primarily due
to their unbounded support. It is evident that larger noise
parameters reduce the safety probability in Theorem 1, as they
directly influence the value of ψ in (25), ultimately leading to
an increased value of β1 in (5). They also reduce the level of
confidence (i.e., 1− β2), as they appear in β̄2 in (9).

Trade-off Between ϵ and β̄2 in Lemma 1. This lemma
establishes a closed-form relationship between β̄2, ϵ, and the
number of empirical realizations N . As indicated by the
proposed bound, for a fixed sample size N , the probability
term β̄2 decreases as the tolerance parameter ϵ increases. This
illustrates a fundamental trade-off: demanding higher accuracy
(i.e., smaller ϵ) reduces the confidence level (1− β̄2), whereas
accepting a larger deviation allows for a stronger probabilistic
guarantee. In practice, selecting ϵ involves balancing the need
for precision with the desire for high-confidence statements
about system behavior. This closed-form relation also gives a
lower bound for N based on ϵ and β̄2 as

N ≥ 1

β̄2ϵ2
(
Tr(Γ2

Σ) + (Tr(ΓΣ))
2 + 2λmax(ΓΣ) Tr(Γµ)

+ 2Tr(ΓΣ) Tr(Γµ)
)
.

Multiple Noise Realizations. While N trajectories should
be collected in (7) to capture the stochastic behavior of the dt-
SNPS, the proposed matrix inequality condition in (24c) needs
to be solved only once. This is achieved by leveraging the
empirical average of the collected trajectories, as embedded
in the data-conformity matrix RDCj in (26). As a result,
the stochastic nature of the system is captured through data,
without the need to solve multiple matrix inequalities. This
design significantly reduces computational overhead, as the
matrix inequality condition in (24c) is evaluated just once, and
the averaging step does not introduce additional complexity in

the optimization process.
Infinite-Horizon Guarantees. If the stochasticity in (1) is

multiplicative i.e., ς ⊙x, with ⊙ being the Hadamard product
(element-wise multiplication), then the constant ψ in (4c)
could be zero. Accordingly, the S-CBC B satisfying condi-
tion (4c) with ψ = 0 is non-negative supermartingale [46,
Chapter I]. In this case, one can employ Definition 3 with
ψ = 0 and provide an upper bound on the probability that all
trajectories of dt-SNPS do not reach unsafe regions in infinite
time horizons, i.e.,

P
{
(xx0u /∈ Xδ for all k∈ [0,∞)

∣∣ x0
}
≥ 1− β1, (41)

where β1 = η
δ . Nevertheless, developing data-driven guaran-

tees in infinite horizon remains an open direction within our
stochastic framework. We note that requiring an S-CBC B with
ψ = 0 is potentially more restrictive than the conditions in
Theorem 1, but offers the advantage of enabling probabilistic
guarantees over infinite time horizons.

Stability Analysis. While the results of this work are
presented in the context of safety analysis for stochastic control
systems using a data-driven trajectory-based approach, the pro-
posed method is not confined to safety analysis. In particular,
the approach here can be naturally utilized to assess other
essential system properties, such as mean-square stability,
since its analysis typically relies on a condition involving
the expected value of a quadratic Lyapunov function—closely
resembling the structure of the condition in (4c).

Computational Complexity of Algorithm 1. The compu-
tational complexity of sum-of-squares (SOS) program depends
on both the degree of the polynomials and the number of state
variables. In particular, for a fixed degree of the polynomials,
the required computation grows polynomially with the dimen-
sion n [57].

Limitations. Similar to any approach, our findings have
also some limitations that are worth mentioning. The primary
issue lies in the class of nonlinear systems considered, which
is restricted to polynomial dynamics. While many real-world
engineering systems can be effectively modeled by polynomial
nonlinearities (cf. benchmark case studies), extending the
approach to handle more general nonlinear systems (e.g.,
involving sin, cos) is a direction for future work. It is worth
noting that this restriction stems from the SOS nature of
our condition (24c), which requires the system dynamics to

Spacecraft System:

Υ:


x+

1 = x1 + τ (J2−J3
J1

x2 x3 + 1
J1
u1) + ς1

x+
2 = x2 + τ (J3−J1

J2
x1 x3 + 1

J2
u2) + ς2

x+
3 = x3 + τ (J1−J2

J3
x1 x2 + 1

J3
u3) + ς3

Regions of Interest: X = [−10, 10]3,
Xη = [−1, 1]3, Xδ = [−10,−6]3 ∪ [6, 10]3

Z = [−0.15, 0.15]3, accordingly ϖ2 = 0.0675
ΓΣ + Γµ + ϵI3 = 0.0175I3 (74% smaller in each
entry)
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TABLE I: Overview of data-driven results across three stochastic control systems with unknown dynamics. For each system,
runtime for collecting data (RT1), runtime for solving conditions (24) (RT2), and memory usage (MU) are reported. Here, N
is the number of samples used for the empirical average of collected trajectories, T denotes the sample horizon, T is the
safety guarantee horizon, ϵ quantifies the norm distance between E[ςς⊤] and its empirical approximation, β1 indicates the
safety guarantee, β̄2 specifies the (complement of) confidence level associated with the empirical approximation, and β2 is the
(complement of) confidence level associated with the data-driven stochastic approach.

System N T T ϵ Γµ ΓΣ β1 β̄2 β2
RT1
(sec)

RT2
(sec)

MU
(Mb)

Lorenz 77 10 100 0.1 03 0.006 I3 0.08 5× 10−4 0.005 0.01 1.58 13.54

Chen 328 7 100 0.2 03 0.008 I3 0.05 5× 10−5 0.00035 0.01 0.74 8.84

Spacecraft 1283 8 20 0.01 03 0.0075 I3 0.07 0.005 0.04 0.03 1.37 12.73

facilitating the satisfaction of the matrix inequality in (24c). In
the case study, we demonstrate that the robust approach fails
to yield a safety controller under bounded disturbances due to
its inherent conservatism. In contrast, the proposed framework
successfully synthesizes a safety controller that satisfies the
safety constraints with high probability.

Similar benefits hold when assuming other noise distribu-
tions, e.g., normal or exponential. These distributions not only
lead to smaller expected second moments than conservative
worst-case bounds, but they also offer a more realistic rep-
resentation of real-world noise characteristics, primarily due
to their unbounded support. It is evident that larger noise
parameters reduce the safety probability in Theorem 1, as they
directly influence the value of ψ in (25), ultimately leading to
an increased value of β1 in (5). They also reduce the level of
confidence (i.e., 1− β2), as they appear in β̄2 in (9).

Trade-off Between ϵ and β̄2 in Lemma 1. This lemma
establishes a closed-form relationship between β̄2, ϵ, and the
number of empirical realizations N . As indicated by the
proposed bound, for a fixed sample size N , the probability
term β̄2 decreases as the tolerance parameter ϵ increases. This
illustrates a fundamental trade-off: demanding higher accuracy
(i.e., smaller ϵ) reduces the confidence level (1− β̄2), whereas
accepting a larger deviation allows for a stronger probabilistic
guarantee. In practice, selecting ϵ involves balancing the need
for precision with the desire for high-confidence statements
about system behavior. This closed-form relation also gives a
lower bound for N based on ϵ and β̄2 as

N ≥ 1

β̄2ϵ2
(
Tr(Γ2

Σ) + (Tr(ΓΣ))
2 + 2λmax(ΓΣ) Tr(Γµ)

+ 2Tr(ΓΣ) Tr(Γµ)
)
.

Multiple Noise Realizations. While N trajectories should
be collected in (7) to capture the stochastic behavior of the dt-
SNPS, the proposed matrix inequality condition in (24c) needs
to be solved only once. This is achieved by leveraging the
empirical average of the collected trajectories, as embedded
in the data-conformity matrix RDCj in (26). As a result,
the stochastic nature of the system is captured through data,
without the need to solve multiple matrix inequalities. This
design significantly reduces computational overhead, as the
matrix inequality condition in (24c) is evaluated just once, and
the averaging step does not introduce additional complexity in

the optimization process.
Infinite-Horizon Guarantees. If the stochasticity in (1) is

multiplicative i.e., ς ⊙x, with ⊙ being the Hadamard product
(element-wise multiplication), then the constant ψ in (4c)
could be zero. Accordingly, the S-CBC B satisfying condi-
tion (4c) with ψ = 0 is non-negative supermartingale [46,
Chapter I]. In this case, one can employ Definition 3 with
ψ = 0 and provide an upper bound on the probability that all
trajectories of dt-SNPS do not reach unsafe regions in infinite
time horizons, i.e.,

P
{
(xx0u /∈ Xδ for all k∈ [0,∞)

∣∣ x0
}
≥ 1− β1, (41)

where β1 = η
δ . Nevertheless, developing data-driven guaran-

tees in infinite horizon remains an open direction within our
stochastic framework. We note that requiring an S-CBC B with
ψ = 0 is potentially more restrictive than the conditions in
Theorem 1, but offers the advantage of enabling probabilistic
guarantees over infinite time horizons.

Stability Analysis. While the results of this work are
presented in the context of safety analysis for stochastic control
systems using a data-driven trajectory-based approach, the pro-
posed method is not confined to safety analysis. In particular,
the approach here can be naturally utilized to assess other
essential system properties, such as mean-square stability,
since its analysis typically relies on a condition involving
the expected value of a quadratic Lyapunov function—closely
resembling the structure of the condition in (4c).

Computational Complexity of Algorithm 1. The compu-
tational complexity of sum-of-squares (SOS) program depends
on both the degree of the polynomials and the number of state
variables. In particular, for a fixed degree of the polynomials,
the required computation grows polynomially with the dimen-
sion n [57].

Limitations. Similar to any approach, our findings have
also some limitations that are worth mentioning. The primary
issue lies in the class of nonlinear systems considered, which
is restricted to polynomial dynamics. While many real-world
engineering systems can be effectively modeled by polynomial
nonlinearities (cf. benchmark case studies), extending the
approach to handle more general nonlinear systems (e.g.,
involving sin, cos) is a direction for future work. It is worth
noting that this restriction stems from the SOS nature of
our condition (24c), which requires the system dynamics to
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design significantly reduces computational overhead, as the
matrix inequality condition in (24c) is evaluated just once, and
the averaging step does not introduce additional complexity in
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Simulation Results: Lorenz System

Designed S-CBC Matrix P :

P =

[
33450.3 3339.99 656.04
3339.99 38333 1417.8
656.04 1417.8 34290.3

]
Designed Controller:

u = −1.4389x2
1 − 1.4844x1x2 − 0.50617x1x3 + 1.7463x2

2 + 0.62559x2x3 + 0.1802x2
3

− 1.9406x1 − 28.1245x2 + 0.1565x3
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Simulation Results: Chen System

Designed S-CBC Matrix P :

P =

[
65587.8 20628.6 486.86
20628.6 103532 984.94
486.86 984.94 60375.3

]
Designed Controller:

u = 0.016422x2
1 − 0.12604x1x2 − 0.48379x1x3 + 0.0019506x2

2 + 2.2790x2x3 + 0.030116x2
3

+ 4.9195x1 − 32.3368x2 + 0.38473x3
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Core Insights

When robust analysis is feasible, it can be more advantageous, as it ensures safety without introducing
any risk to the system.
Otherwise, despite introducing some probabilistic risk, stochastic analysis can be less conservative than
robust analysis.

Future work: Develop physics-informed data-driven techniques3 that can significantly reduce the trajectory
horizon Thank you for your attention!

[3] M.H. Ashoori, A. Aminzadeh, A. Nejati, and A. Lavaei, “Physics-Informed Data-Driven Control of Nonlinear Polynomial Systems with Noisy Data", IEEE TAC, under
review, 2025.
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