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Safe learning-based control – our setting

• We consider a discrete-time nonlinear system of the form:

where 𝑓 is a known map and 𝑔 is unknown.

• Given a data set 

we aim at synthesizing a controller for our system such that the safety constraints hold:

• All results in the presentation can be adapted if the dynamics has bounded disturbances.
2

𝑥!"# = 𝑓 𝑥!, 𝑢! + 𝑔 𝑥!, 𝑢! , 𝑥! ∈ ℝ$, 𝑢! ∈ ℝ%

𝐷 = 𝑥&, 𝑢&, 𝑥&" |	𝑥&" = 𝑓 𝑥&, 𝑢& + 𝑔 𝑥&, 𝑢& , 𝑖 = 1,… ,𝑁

𝑥! ∈ 𝕏, 𝑢! ∈ 𝕌, ∀𝑡 ∈ ℕ



Safe learning-based control – taxonomy* 

• Learning the model vs. learning the controller

• Probabilistic guarantees vs. robust guarantees

• Parametric approaches vs. nonparametric approaches
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* Hewing et al., Learning-Based Model Predictive Control: Toward Safe Learning in Control.
   Annual Review of Control, Robotics, and Autonomous Systems, 2020.
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Outline of the talk

1. Learning set-valued models from data

2. Safe learning-based nonlinear model predictive control

3. A path towards online learning
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Learning set-valued models – formulation

Assume the unknown map 𝑔	satisfies the following property*

where 𝐴 and 𝐵 are known matrices.

Given the data set

Compute the “tightest” set-valued map 𝐺:ℝ$×ℝ% ⇉ ℝ$ such that  
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𝐷 = 𝑥&, 𝑢&, 𝑥&" |	𝑥&" = 𝑓 𝑥&, 𝑢& + 𝑔 𝑥&, 𝑢& , 𝑖 = 1,… ,𝑁  

∀𝑥 ≼ 𝑥', ∀𝑢 ≼ 𝑢', 𝐴 𝑥' − 𝑥 + 𝐵 𝑢' − 𝑢 ≼ 𝑔 𝑥', 𝑢' − 𝑔(𝑥, 𝑢)	

* True if 𝑔 is Lipschitz or if 𝑔 has lower bounded derivatives

∀𝑥 ∈ ℝ$, ∀𝑢 ∈ ℝ%, 𝑔 𝑥, 𝑢 ∈ 𝐺(𝑥, 𝑢)



Reformulation using monotone maps (1)

• Consider the map ℎ:ℝ$×ℝ% → ℝ$ given by

• ℎ is unknown and monotone

• Consider the modified data set 𝐷' = 𝑥&, 𝑢&, 𝑦& |	𝑖 = 1,… ,𝑁 where
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∀𝑥 ≼ 𝑥', ∀𝑢 ≼ 𝑢', ℎ(𝑥, 𝑢) ≼ ℎ 𝑥', 𝑢' 	

ℎ 𝑥, 𝑢 = 𝑔 𝑥, 𝑢 − 𝐴𝑥 − 𝐵𝑢

𝑦& = ℎ 𝑥&, 𝑢& = 𝑥&" − 𝑓 𝑥&, 𝑢& − 𝐴𝑥& − 𝐵𝑢&



Reformulation using motonone maps (2)

• A map Cℎ ∶ ℝ$×ℝ% → ℝ$ is consistent with 𝐷′ (i.e. Cℎ ∈ 𝐶)!) if Cℎ is monotone and

• A set-valued map 𝐻:ℝ$×ℝ% ⇉ ℝ$ is simulating 𝐷′ (i.e. 𝐻 ∈ 𝑆)!)	if for all Cℎ ∈ 𝐶)'

• It is minimal if for all I𝐻 ∈ 𝑆)!
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∀𝑖 = 1,… ,𝑁, 𝑦& = Cℎ 𝑥&, 𝑢&

∀𝑥 ∈ ℝ$, ∀𝑢 ∈ ℝ%, Cℎ 𝑥, 𝑢 ∈ 𝐻(𝑥, 𝑢)

∀𝑥 ∈ ℝ$, ∀𝑢 ∈ ℝ%, 𝐻 𝑥, 𝑢 ⊆ I𝐻(𝑥, 𝑢)



Computation of the minimal simulating map
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(𝑥!, 𝑢!)
(𝑥", 𝑢")
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Computation of the minimal simulating map
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(𝑥", 𝑢")

(𝑥#, 𝑢#)
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Computation of the minimal simulating map
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(𝑥!, 𝑢!)
(𝑥", 𝑢")

(𝑥#, 𝑢#)

(𝑥$, 𝑢$)

(𝑥%, 𝑢%)
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𝑦!
𝑦#

𝑦"

𝑦$

𝑦%

𝐻(𝑥, 𝑢)

Computation of the minimal simulating map



Minimal simulating map – theorem

For a data set 𝐷′, there exists a unique minimal simulating map 𝐻:ℝ$×ℝ% ⇉ ℝ$. 
It satisfies the following properties:
1. It is inner-semi continuous
2. For all 𝑥 ∈ ℝ$, 𝑢 ∈ ℝ%, 𝐻 𝑥, 𝑢 is an interval of ℝ$

3. There exist interval partitions 𝑋1 1∈3 and 𝑈4 4∈5 of ℝ$ and ℝ%, and a collection 
of intervals 𝑌1,4 1∈3,4∈5 such that 
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𝐻 𝑥, 𝑢 = ⋂ 1,4 	7∈89(:"),;∈89(<#)}𝑌1,4



Effective implementation

Computation of the minimal simulating map:
• Computational complexity: 𝒪 𝑁× log 𝑄 × 𝑃 + 𝑄 × 𝑃
• With 𝑄 × 𝑃 = 𝑁 + 1 $"%, we get 𝒪 𝑁$"% , the complexity is polynomial in the 

size of the data set.

Fix the partitions 𝑋1 1∈3 and 𝑈4 4∈5 a priori:

• Still “safe” but introduces some conservatism: 𝐻 minimal in the class of simulating 
maps piecewise constant on these partitions.
• The complexity becomes linear in the size of the data set
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Outline of the talk

1. Learning set-valued models from data

2. Safe learning-based nonlinear model predictive control

3. A path towards online learning
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Data-driven safety filter

• We consider the data-driven difference inclusion given by:

where U𝑓 𝑥, 𝑢 = 𝑓 𝑥, 𝑢 + 𝐴𝑥 + 𝐵𝑢.

• Given state and input safety constraints 𝕏 and 𝕌, we want to compute a robust 
controlled invariant set 𝕏> ⊆ 𝕏 such that

• Then a safety filter is given by the set-valued map 𝐶>: 𝕏> ⇉ 𝕌
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𝑥!"# ∈ U𝑓 𝑥!, 𝑢! +𝐻 𝑥!, 𝑢! , 𝑥! ∈ ℝ$, 𝑢! ∈ ℝ%

∀𝑥 ∈ 𝕏>, ∃𝑢 ∈ 𝕌, U𝑓 𝑥, 𝑢 + 𝐻 𝑥, 𝑢 ⊆ 𝕏>

𝐶> 𝑥 = 𝑢 ∈ 𝕌|	 U𝑓 𝑥, 𝑢 + 𝐻 𝑥, 𝑢 ⊆  𝕏>



Symbolic control approach

A robust controlled invariant set can be computed using the symbolic control approach*:
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Difference Inclusion Finite-State 
Difference Inclusion

Finite-State 
Robust Controlled InvariantRobust Controlled Invariant

*Girard, Meyer & Saoud, Approches symboliques pour le contrôle des systèmes non linéaires.
Techniques de l'Ingénieur, 2024.

Abstraction

Concretization

Discrete synthesis



Example – adaptive cruise control
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Consider two vehicles (leader and follower):
• Relative distance 𝑑
• Follower and leader velocity 𝑣# and 𝑣?
• Unknown dynamics

Robust controlled invariant set 
computed from 106 data points.



Safe learning-based MPC – the compatible models approach

We consider the following MPC:

where Cℎ: ℝ$×ℝ% → ℝ$ is a continuous selection* of 𝐻:
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minimize
𝑢@|!	, … , 𝑢BC#|!
𝑢D|! ∈ 𝕌, 𝑥D"#|! ∈ 𝕏, 𝑘 = 0,… , 𝑟 − 1

a
DE@

BC#

𝑙D 𝑥D|!, 𝑢D|! + 𝑙B 𝑥B|!

𝑢@|! ∈ 𝐶>(𝑥@|!)

𝑥D"#|! = U𝑓 𝑥D|!, 𝑢D|! + Cℎ 𝑥D|!, 𝑢D|!

∀𝑥 ∈ ℝ$, ∀ u∈ ℝ%, Cℎ 𝑥, 𝑢 ∈ 𝐻(𝑥, 𝑢)

* A continuous selection of H exists by Michael selection theorem.

constraints

data-driven safety filter
data-driven prediction



The compatible models approach – theorem 

Consider the unknown discrete-time nonlinear system:

interconnected with the safe learning-based MPC with

Then, the optimization problem is recursively feasible and 

𝑥!"# = 𝑓 𝑥!, 𝑢! + 𝑔 𝑥!, 𝑢! , 𝑥! ∈ ℝ$, 𝑢! ∈ ℝ%

𝑥@|! = 𝑥!, 𝑢! = 𝑢@|!, ∀𝑡 ∈ ℕ

𝑥! ∈ 𝕏, 𝑢! ∈ 𝕌, ∀𝑡 ∈ ℕ
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Effective construction of the continuous selection

• Select values at the vertices 𝑥F, 𝑢F F∈G	of the partition 𝑋1×𝑈4 1∈3,4∈5

• Then interpolate in each cell of the partition by a multi-affine function (multi-variate 
polynomial of degree 1 in each variable) :

• From properties of multi-affine maps, Cℎ is a continuous selection of 𝐻. 

∀𝑣 ∈ V, Cℎ 𝑥F, 𝑢F ∈ 𝐻(𝑥F, 𝑢F)	

Cℎ 𝑥, 𝑢 = 𝑎@ + 𝑎#𝑥# + 𝑎?𝑥? + 𝑎H𝑢# + 𝑎I𝑥#𝑥? + 𝑎J𝑥#𝑢# + 𝑎K𝑥?𝑢# + 𝑎L𝑥#𝑥?𝑢# +⋯

∀ 𝑥, 𝑢 ∈ 𝑋1×𝑈4
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Example – bicycle model with disturbances

2→ 5 1→ 0.5
2.5

(!."#) |K| =
106 (!."#)

ω ↑ [↓ω
2 ,

ω
2 ], ε ↑ [↓1, 1], v ↑

[0.025, 0.5],d ↑ [↓0.05, 0.05]→[↓0.05, 0.05]→[↓0.05, 0.05]
ω, ε v

x y

tov = 2.78

x y

L

Figure !.$: The unicycle model. The reference point is at the center of
the rear axle.

Figure !.%: The environment where the vehicle should maneuver an
obstacle to reach a target position

##

(a) The over-approximation of the
dynamics of ẋ

(b) The over-approximation of the
dynamics of ẏ

(c) The over-approximation of the dy-
namics of ω̇

Figure !.": Over-approximation of the bicycle dynamics

ω

tinv = 871.88

#$

2→ 5 1→ 0.5
2.5

(!."#) |K| =
106 (!."#)

ω ↑ [↓ω
2 ,

ω
2 ], ε ↑ [↓1, 1], v ↑

[0.025, 0.5],d ↑ [↓0.05, 0.05]→[↓0.05, 0.05]→[↓0.05, 0.05]
ω, ε v

x y

tov = 2.78

x y

Figure !.$: The unicycle model. The reference point is at the center of
the rear axle.

Start
Goal

2 m

5 m

1 m

0.5 m

Figure !.%: The environment where the vehicle should maneuver an
obstacle to reach a target position

##

3 states, 2 inputs

Simulating map
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Example – bicycle model with disturbances

0 1 2 3 4 5

0

0.5

1

1.5

2

Figure !.": The maximal controlled invariant for three values of ω.

x(k + 1) = x(k) + ω(x(k)→ y(k) + d1(k))T0

y(k + 1) = y(k) + (ε x(k)→ x(k)z(k)→

y(k) + u(k) + d2(k))T0

z(k + 1) = z(k) + (x(k)y(k)→ ϑ z(k) + d3(k))T0

(!.#$)

ω = 10,ϑ = 8
3 , ε = 28
X = [→10, 10]↑ [→10, 10]↑

[→10, 10] U = [→200, 200] d = [0.5, 0.5, 0.5]
T0 = 0.01s

5↓104

106

D

$%

Robust control invariant set
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Example – bicycle model with disturbances

(a) The single-valued estima-
tion of the dynamics of ẋ (ˆ̇x)

(b) The di!erence between the
true function and the estima-
tion on the grid’s points

Figure ".#: Estimation with piecewise multi-a$ne functions

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

Figure ".%: Trajectory of the vehicle

test = 31.48

#&’

Trajectory using safe learning-based MPC
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Outline of the talk

1. Learning set-valued models from data

2. Safe learning-based nonlinear model predictive control

3. A path towards online learning
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Online learning  – model update

Consider two data sets 𝐷 and  𝐷'and the associated minimal simulating maps 
𝐻) and  𝐻)! , then

• The minimal simulating map can be updated from newly collected data 𝐷'without 
reprocessing older data 𝐷.

• Afterwards, the continuous selection can be updated by adapting the value at the 
vertices of the partition to the new constraints.
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𝐻)∪)! 𝑥, 𝑢 = 𝐻) 𝑥, 𝑢 ∩ 𝐻)! 𝑥, 𝑢 , ∀𝑥 ∈ ℝ$, ∀𝑢 ∈ ℝ%



Online learning – safety filter update

Update the robust controlled invariant set: 
• Check if some states outside the old invariant can be controlled to the reach the 

invariant (computationally cheap, conservative)
• Synthesize a new robust controlled invariant set from scratch using the updated model 

(computationally expensive, no conservatism)

The safety filter is easily updated given the new robust controlled invariant set. 
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Conclusion and outlook

A set-valued approach to safe-learning:
• Results grounded in theory of monotone maps
• Computational approach based on combination of symbolic control and MPC
• Formal safety guarantees

Future research directions:
• Improvement of the MPC implementation (warm start, non-smooth constraints)
• Efficient online learning (active learning, dual control…)
• Safe learning of time-varying systems (handling outdated data)
• Physics-informed learning (e.g. unknown map is solution of a PDE)
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