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Sensor networks are vulnerable 3/22

Source: toolsense.io M. Chong (m.s.t.chong@tue.nl)


toolsense.io

Sensor networks in power grids are vulnerable
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Sensor networks in power grids are vulnerable
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The health of the grid is monitored at the substation level.
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Data may be corrupted
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The secure state estimation problem formulation 6/22

System with N sensors: é_ﬁ "‘(”Wz
& R S R
cT - { x(t)=f(x(t), u(t)), t € Rxo, ﬁ? ;
Lyi(t) = hi(x(t)) + ai(t), i€ [N]. .
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Standing assumptions
» M out of N sensors can be corrupted.

» No assumption on the attack model (statistical properties nor boundedness).

Design an estimator such that the state estimate X converges to the true state x
with an error bound that is independent of the attack signals a;.

In this talk, model-based — data-based.
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Why are traditional approaches not
applicable for security?



Traditional approaches

1. Fault detection and isolation
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2. Robust control

» Design system to be robust w.r.t. attacks, which are often treated as bounded signals.
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Control ,L
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A residual Fault fault?
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Model
of fault

Drawback: Needs a model for each failure mode, which can be many!
2. Robust control
» Design system to be robust w.r.t. attacks, which are often treated as bounded signals.
Drawback: Adversarial signals may be unbounded.
3. Stochastic estimation and control
» Assume that attacks follow a probabilistic model.

Drawback: Does not necessarily model the adversary's behaviour.

Secure state estimation aims to achieve an estimation accuracy that is
independent of the attack.
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Suppose there are 3 sensors measuring the same system. We know the number of
sensors which have been corrupted, but not which ones.
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Suppose there are 3 sensors measuring the same system. We know the number of

sensors which have been corrupted, but not which ones.

Scenario 1: One sensor has been corrupted.
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Suppose there are 3 sensors measuring the same system. We know the number of

sensors which have been corrupted, but not which ones.

Scenario 1: One sensor has been corrupted.

Sensor 1 \/“’\/\/\/\/\/\/\/\/\
Sensor 2 /\/\/
Sensor 3 /\/\/

By inspection of the signals, easy to tell that Sensor 1 has been corrupted.
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The intuition 9/22

Suppose there are 3 sensors measuring the same system. We know the number of
sensors which have been corrupted, but not which ones.

Scenario 2: Two sensors have been corrupted.

Sensor 1 \/\/\W\/\/\

Sensor 2 \/\/\/
vensor 3 /W

Difficult to tell by inspection of the signals. One might infer that Sensor 2 and 3 have
been corrupted. Untrue!
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Sensor redundancy is needed.
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M-attack observability



Theorem: M-attack observability 10/22

x(k + 1)=Ax(k) + Bu(k),

System with N sensors: { yi(k) = Cix(K) + ai(K), i € [N], K € Nao.
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Theorem: M-attack observability 10/22

x(k + 1)=Ax(k) + Bu(k),

System with N sensors: { yi(k) = Cix(k) + a;(K), i € [N], K € Nag.

M-attack observability

The system is M-attack observable on {0,1,..., T}, T < oo if for every input u, index
sets Z, 7' C [N] with M elements, attack vec. a € A7 and &' € Az,
T
(Az denotes the set of all vectors (a1, a, ..., ay) where a; =0, j € [N]\Z)
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x(k + 1)=Ax(k) + Bu(k),

System with N sensors: { yi(k) = Cix(k) + ,(K), i € [N], K € Nag.

M-attack observability

The system is M-attack observable on {0,1,..., T}, T < oo if for every input u, index
sets Z, 7' C [N] with M elements, attack vec. a € A7 and a’ € Az, init. cond. x(0),
x'(0), the following holds

M. Chong (m.s.t.chong@tue.nl)



Theorem: M-attack observability 10/22

. [ x(k + 1)=Ax(k) + Bu(k),
System with N sensors: { vi(k) = Cix(k) + ai(k), i € [N], k € N>q.
M-attack observability

The system is M-attack observable on {0,1,..., T}, T < oo if for every input u, index
sets Z, T’ C [N] with M elements, attack vec. a € Az and 2’ € Az, init. cond. x(0),
x'(0), the following holds

yi(t,x(0),u,a) = yi(t,x'(0),u,a),Vt € {0,1,..., T}HVi € [N] = x(0) = x'(0).

Theorem
The system is M-attack observable, if and only if
1. N > 2M, where M is the number of compromised sensors,
2. the system is observable via every y 7 := (y;);c; sensors, where J C [N] with
N — 2M elements. (every (A, C7) pair is observable).
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From M-attack observability to an algorithm 11/22
System with N sensors:

{X(k + 1)=Ax(k) + Bu(k),
vi(k) = Cix(k) + ai(k), i € [N], k € Nxq.
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System with N sensors:

{x(k + 1)=Ax(k) + Bu(k),
vi(k) = Cix(k) + ai(k), i € [N], k € Nxq.

Theorem
Suppose the following holds
1. N > 2M, where M is the number of compromised sensors,

2. the system is observable via every y7 := (y;);c s sensors, where J C [N] with
N — 2M elements. (every (A, C7) pair is observable).

Then there exists an estimator to provide estimate X such that there exists a function
B € KL satisfying

%(k) = x(k)| < B(1%(0) — x(0)], k),
Vk > 0, init. cond. %(0) and x(0).
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System with N sensors:

{X(k + 1)=Ax(k) + Bu(k),
vi(k) = Cix(k) + ai(k), i € [N], k € Nxq.

Theorem
Suppose the following holds
1. N > 2M, where M is the number of compromised sensors,

2. the system is observable via every y7 := (y;);c s sensors, where J C [N] with
N — 2M elements. (every (A, C7) pair is observable).
Then there exists an estimator to provide estimate X such that there exists a function
B € KL satisfying
%(k) = x(K)| < B(|%(0) = x(0)|, k)

independent of attack signals a

Vk > 0, init. cond. %(0) and x(0).
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model-based SSE algorithm



A model-based SSE algorithm 12/22

. System
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A model-based SSE algorithm

1. For each combination of N — M
(> N — 2M) sensors, construct an
estimator Op based on those sensors, that
is robust (input-to-state stable) w.r.t.
attack a.

2. For each combination of N — 2M sensors,
construct a robust estimator Oq w.r.t. a.

3. One set of N — M sensors is attack-free.
For this set, all combinations of N —2M
sensors will also be attack-free. Handled
by consistency mapping ®.

12/22

. System
yi(t)
Ypy (t) OP1 iPl (t) [
yQ(t) YPp) (t) OP‘P‘ iP‘p\ (t)
; ya, (1) Oa, Eq. ()
yn(t) ' : :
yQ|Q\ (t) OQ‘Q‘ i‘Q\Q\ (t)
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The consistency mapping ¢ 13/22

System
ip, (¢
Op, p, (1)
I t
OPW P\P\( )
ya (t) Zq, (t)
Oq,
YQuq (1) 2qq (t)
OQ‘Q‘ Q|

(1)

Consistency mapping ® to choose an estimate X from
the multi-observer:

k) = xq(k) — xp(k)|, k > 0.
mp(k) QcP,|g|iXN—2M|XQ( ) = %p(k)[, k=0
(k) =X5u(k), o(k):= argmin mp(k).

PC[N],|P|=N—-M
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H System
yi(t)
vp, (1) @ @p, (1)
P
a(8) yP.P (t) O; ir;m(t)
1Pl
E ya, (1) Oa, &q, (t)
yn(t) : : :
YQpq (1) Oa Bqq (1)

2(t)

Consistency mapping ® to choose an estimate X from
the multi-observer:

k) = xq(k) — xp(k)|, k > 0.
mp(k) QcP,|g|iXN—2M|XQ( ) = %p(k)[, k=0
(k) =X5u(k), o(k):= argmin mp(k).

PC[N],|P|=N—-M

Theorem
Suppose system is M-attack observable, then

%(k) =x(K)| < B(I%(0) = x(0), k) k=0,

independent of attack signals a

where 8 € ICL, for all x(0), %p(0), Xq(0) € R".
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' System
yi(t)
yp, (t) Op, p, ()
w [P g, e
N PO e EN 0
yn(t) : : :
Yaiq (1) Oq £Quq (1)

(1)

Consistency mapping ® to choose an estimate X from
the multi-observer:

k) = xQ(k) — xp(k)|, k > 0.
(k) QCpJfinXNszVQ( ) = %p(k)[, k=0
(k) = %5)(k), o(k):= argmin 7p(k).

PC[N],|P|=N—M
Theorem

Suppose system is M-attack observable, then

[%(k) = x(K) < p(X(0) = x(0),k) k>0,

independent of attack signals a

where 5 € KL, for all x(0), %p(0), X(0) € R".

Corollary: As t — oo, o(t) chooses the attack-free set.
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Takeaways: model-based SSE 14/22

yp, (1) ov e, (1) []
. . .

When the model is known, we have

1. Necessary and sufficient conditions for secure

(o) | ® yT\ o (0
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: 8 [ state estimation of LTI systems.

v ()0 a0
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References:
» (Chong, Wakaiki, Hespanha; 2015) for LTI
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When the model is known, we have
1. Necessary and sufficient conditions for secure
state estimation of LTI systems.
2. When M sensors are under attack, we need

(i) N > 2M sensors for
%(k) —x(K) < BUR(0) — x(O)], k) . Vk.

independent of attack signals a

» (Chong, Wakaiki, Hespanha; 2015) for LTI
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When the model is known, we have
1. Necessary and sufficient conditions for secure
state estimation of LTI systems.
2. When M sensors are under attack, we need
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1. Necessary and sufficient conditions for secure
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2. When M sensors are under attack, we need
(i) N > 2M sensors for
[%(k) = x(k)| < B(I%(0) = x(0)|, k) , Vk.

independent of attack signals a
(i) N > M sensors for
(k) € X C X+ known, Vk.

» (Chong, Wakaiki, Hespanha; 2015) for LTI and (Chong, Sandberg, Hespanha; 2020) for NL;

> (Chong; 2025) for time-sampled and corrupted measurements;
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When the model is known, we have

1. Necessary and sufficient conditions for secure
yi(t) . .

10 0 [ state estimation of LTI systems.

. 2. When M sensors are under attack, we need
wlt) Prm G g 7] (i) N > 2M sensors for

[ - -

- o %(k) = x(k)| < BUK(0) — x(0)]. k), Vk.

ya, (1) ]O—Q‘\ q, () independent of attack signals a
i | \—‘ ; (i) N > M sensors for

o) 0 (0 X(k) € X C X+ known, Vk.

L

———
set-based SSE

References:
» (Chong, Wakaiki, Hespanha; 2015) for LTI and (Chong, Sandberg, Hespanha; 2020) for NL;
> (Chong; 2025) for time-sampled and corrupted measurements;

» (Niazi, Alanwar, Chong, Johansson; 2023, 2025) on set-based SSE.
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|dentify the attack-free set of sensors.
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Recall that we consider a LTI system with N sensors, where M < N has been attacked:

x(k + 1) =Ax(k) + Bu(k), yi(k) = Cix(k) + a;(k), i € [N], k € Nso.

M. Chong (m.s.t.chong@tue.nl)



Our approach 1522

Recall that we consider a LTI system with N sensors, where M < N has been attacked:
x(k +1) =Ax(k) + Bu(k), yi(k) = Cix(k) + ai(k), i € [N], k € N>o.

» There must be one set of N — M sensors which is attack-free.

M. Chong (m.s.t.chong@tue.nl)



Our approach 1522
Recall that we consider a LTI system with N sensors, where M < N has been attacked:
x(k +1) =Ax(k) + Bu(k), yi(k) = Cix(k) + ai(k), i € [N], k € N>o.

» There must be one set of N — M sensors which is attack-free.

]

» We don't know which set

M. Chong (m.s.t.chong@tue.nl)



Our approach 1522
Recall that we consider a LTI system with N sensors, where M < N has been attacked:
x(k +1) =Ax(k) + Bu(k), yi(k) = Cix(k) + ai(k), i € [N], k € N>o.

» There must be one set of N — M sensors which is attack-free.

]

» We don't know which set — Check every N — M set.

M. Chong (m.s.t.chong@tue.nl)



Our approach 1522

Recall that we consider a LTI system with N sensors, where M < N has been attacked:
x(k +1) =Ax(k) + Bu(k), yi(k) = Cix(k) + ai(k), i € [N], k € N>o.

» There must be one set of N — M sensors which is attack-free.

]

» We don't know which set — Check every N — M set.

]

» For every N — M set of sensors z;, we have the following model:
X(k + 1):AX(k) + Bu(k), Zj(k) = ijX(k)7 k € NZO’

where J; C [N] with cardinality N — M

M. Chong (m.s.t.chong@tue.nl)



Our approach 1522

Recall that we consider a LTI system with N sensors, where M < N has been attacked:
x(k +1) =Ax(k) + Bu(k), yi(k) = Cix(k) + ai(k), i € [N], k € N>o.

» There must be one set of N — M sensors which is attack-free.

]

» We don't know which set — Check every N — M set.

]

» For every N — M set of sensors z;, we have the following model:
X(k + 1):AX(k) + Bu(k), Zj(k) = ijX(k)7 k € NZO’

where J; C [N] with cardinality N — M for j € [n)], where njy := (NﬁIM).

M. Chong (m.s.t.chong@tue.nl)



Our approach 1522

Recall that we consider a LTI system with N sensors, where M < N has been attacked:
x(k +1) =Ax(k) + Bu(k), yi(k) = Cix(k) + ai(k), i € [N], k € N>o.

» There must be one set of N — M sensors which is attack-free.

]

» We don't know which set — Check every N — M set.

]

» For every N — M set of sensors z;, we have the following model:
X(k + 1):AX(k) + Bu(k), Zj(k) = ijX(k), k € Nzo,

where J; C [N] with cardinality N — M for j € [n)], where njy := (NﬁIM).

Since the model (A, B, C;) are unknown,
M. Chong (m.s.t.chong@tue.nl)



Our approach 1522

Recall that we consider a LTI system with N sensors, where M < N has been attacked:
x(k +1) =Ax(k) + Bu(k), yi(k) = Cix(k) + ai(k), i € [N], k € N>o.

» There must be one set of N — M sensors which is attack-free.

]

» We don't know which set — Check every N — M set.

]

» For every N — M set of sensors z;, we have the following model:
X(k + 1):AX(k) + Bu(k), Zj(k) = ijx(k), k € Nzo,

where J; C [N] with cardinality N — M for j € [n)], where njy := (NﬁIM).

Since the model (A, B, C;) are unknown, we will learn them from data!
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According to Willems et. al.'s Fundamental Lemma,

Model-based representation
x(k+1) = Ax(k)+ Bu(k),
zj(k) = Cgx(k), k € N>o,

for J; C [N] with N — M elements and
j € ny.
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According to Willems et. al.'s Fundamental Lemma,

Model-based representation Data-based representation
x(k+1) = Ax(k) + Bu(k), For j € [m], .
Zj(k) = C.]J.X(k), k € N>, — Xj(k-l— 1) = A 1) ,
&;(k)
for J; C [N] with N — M elements and A= X Unt !
je . o= Non+1,T )<j,n,T
[ zj(k—n) ]
Un T, )A<J-7,,,T and )A<J-7,,+1,T are data matrices: :
, () = | Bkl
Kinr =[X(0) . X0+ T -1, MR =T
Xipr, 7 = [X(n+1) ... X(n+T)], :
Unr =[u(n) ... u(ln+T-1)], | u(k—1) |
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According to Willems et. al.'s Fundamental Lemma,

Model-based representation Data-based representation
x(k+1) = Ax(k) + Bu(k), For j € [m], )
5(k) =Cyx(k),  keNso, > xka1) =AU ]
X;j(k)
for J; C [N] with N — M elements and A = R Un,T !
JjE€ny. ST LT R ]
Theorem

Recall x € R”, u € R™.
Model-based rep. = Data-based rep.

only if
rank [;(J"’T} =m(n+1)+(N—M)nwith T>(m+1)((m+ N— M)n+1).
\j,n, T
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Model-based representation
x(k+1) = Ax(k)+ Bu(k),
Z_,(k) = ijx(k), k € Nzo,

for J; C [N] with N — M elements and
j € ny.

- the main idea 17/22

Data-based representation

For j € [ny],
U(k)]
Xi(k+1 =/\-[ ,
J( ) J .)C'J(k)
O Un,T !
/\J = j,n+1,T )?jnT o
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A data-based attack detection algorithm
Data-based representation

Forjelm], Xk+1) =N [%((klg)] ’

Algorithm
1. (Offline) Construct A;, Vj € [ny].

A

= Xjnt+1,T [

A

Xj

18/22

Un,T :|T
7n?T
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Data-based representation

, u(k) . Upr |’
FOrj € [nJ], )C'J(k + ].) = /\j \ 5 /\J' = )<j,n+1,T )/% ’ .
.j’n7T

Algorithm
1. (Offline) Construct A;, Vj € [ny].
2. (Offline) Apply input u of length n, collect online measurements of length T until

rank Lf(/”] =m(n+1)+ (N —M)nwith T > (m~+1)((m+ N — M)n+1).
\j,n, T
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Algorithm
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2. (Offline) Apply input u of length n, collect online measurements of length T until
rank Lf(/”] =m(n+1)+ (N —M)nwith T > (m~+1)((m+ N — M)n+1).
\j,n, T

3. (Online) Apply test input data of length 1, collect the online data, and construct the
matrices Uy 1, X x 1, Xj k41,1, Vi €[]

M. Chong (m.s.t.chong@tue.nl)



A data-based attack detection algorithm 18/22
Data-based representation
T
. k 5 U
FOrjE[nJ], )(J(k—l-]_):/\J |:U( ):| 5 /\J' = )<j,n+1,T |:)?n,T:| .
.j?n7T
Algorithm
1. (Offline) Construct A;, Vj € [ny].
2. (Offline) Apply input u of length n, collect online measurements of length T until
rank Lf(/”] =m(n+1)+ (N —M)nwith T > (m~+1)((m+ N — M)n+1).
j7n7T
3. (Online) Apply test input data of length 1, collect the online data, and construct the
matrices Uy 1, X x 1, Xj k41,1, Vi €[]
4. (Online) Compute set of attack-free sensors

& Uk
Xikp11— N { -1
—3J9 +171 J

’ Xjk1

J¥[k + 1] € argmin
J€[ny]

2
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Based on

Sribalaji Anand, M. Chong, A. Texeira (2025)
Data-driven attack detection for networked control systems.
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Based on

Sribalaji Anand, M. Chong, A. Texeira (2025)
Data-driven attack detection for networked control systems.

» A data-based attack identification algorithm with

offline learning + online data-based attacked sensor identification
> A fully online algorithm for certain attack types:

replay attacks and network delay attacks ]
» What about set-based approaches? Preliminary work presented at this CDC:

Z. Zhang, M. Niazi, M. Chong, K. Johansson, A. Alanwar
Data-driven Nonconvex Rechability Analysis using Exact Multiplication
Thursday. CO03. 1715-1730. Oceania III.
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» Security is crucial for CPS.

» Model-based secure state estimation when M sensors are under attack achieved
through sensor redundancy:

1. Need N > 2M for trajectory-based convergence.
2. Need N > M for set-based convergence.

» Data-driven techniques are very useful, if we can overcome key challenges...

> First steps: A data-driven sensor attack identification algorithm for /inear
networked control systems.

» Towards nonlinear and networked (hybrid) control systems!
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» Postdoc (3 years) ‘ Cygﬁgcal ’
» PhD (4 years) S

Looking for candidates with a strong background and interest in
hybrid dynamical systems, control, estimation and optimization.

Join my group at the Eindhoven University of Technology (TU/e) in the Netherlands!

» Proximity and close ties to the high-tech
industry in the region.

» TU/e has a vibrant group of active researchers
in the area of systems and control.

Get in touch: m.s.t.chong@tue.nl or https://www.michellestchong.com
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