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Sensor networks are vulnerable 3/22

Source: toolsense.io M. Chong ⟨m.s.t.chong@tue.nl⟩
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Sensor networks in power grids are vulnerable 4/22
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Data may be corrupted 5/22
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The secure state estimation problem formulation 6/22

System with N sensors:

CT :

{
ẋ(t)=f (x(t), u(t)), t ∈ R≥0,
yi (t) = hi (x(t)) + ai (t), i ∈ [N].
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Standing assumptions

▶ M out of N sensors can be corrupted.

▶ No assumption on the attack model (statistical properties nor boundedness).

Design an estimator such that the state estimate x̂ converges to the true state x
with an error bound that is independent of the attack signals ai .

In this talk, model-based → data-based.
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Why are traditional approaches not
applicable for security?
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Traditional approaches 7/22

1. Fault detection and isolation

Control 
system

Model 
of fault

Fault 
detector

attack

residual fault?

Drawback: Needs a model for each failure mode, which can be many!

2. Robust control
▶ Design system to be robust w.r.t. attacks, which are often treated as bounded signals.

Drawback: Adversarial signals may be unbounded.

3. Stochastic estimation and control
▶ Assume that attacks follow a probabilistic model.

Drawback: Does not necessarily model the adversary’s behaviour.

Secure state estimation aims to achieve an estimation accuracy that is
independent of the attack.
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The intuition 8/22

Suppose there are 3 sensors measuring the same system. We know the number of
sensors which have been corrupted, but not which ones.
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The intuition 8/22

Suppose there are 3 sensors measuring the same system. We know the number of
sensors which have been corrupted, but not which ones.

Scenario 1: One sensor has been corrupted.

Sensor 1

Sensor 2

Sensor 3

By inspection of the signals, easy to tell that Sensor 1 has been corrupted.
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The intuition 9/22

Suppose there are 3 sensors measuring the same system. We know the number of
sensors which have been corrupted, but not which ones.

Scenario 2: Two sensors have been corrupted.

Sensor 1

Sensor 2

Sensor 3

Difficult to tell by inspection of the signals. One might infer that Sensor 2 and 3 have
been corrupted. Untrue!
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Theorem: M-attack observability 10/22

System with N sensors:

{
x(k + 1)=Ax(k) + Bu(k),

yi (k) =Cix(k) + ai (k), i ∈ [N], k ∈ N≥0.

M-attack observability

The system is M-attack observable on {0, 1, . . . ,T}, T <∞ if for every input u, index
sets I, I ′ ⊆ [N] with M elements, attack vec. a ∈ AI and a′ ∈ AI′ ,

M. Chong ⟨m.s.t.chong@tue.nl⟩



Theorem: M-attack observability 10/22

System with N sensors:

{
x(k + 1)=Ax(k) + Bu(k),

yi (k) =Cix(k) + ai (k), i ∈ [N], k ∈ N≥0.

M-attack observability

The system is M-attack observable on {0, 1, . . . ,T}, T <∞

if for every input u, index
sets I, I ′ ⊆ [N] with M elements, attack vec. a ∈ AI and a′ ∈ AI′ ,

M. Chong ⟨m.s.t.chong@tue.nl⟩



Theorem: M-attack observability 10/22

System with N sensors:

{
x(k + 1)=Ax(k) + Bu(k),

yi (k) =Cix(k) + ai (k), i ∈ [N], k ∈ N≥0.

M-attack observability

The system is M-attack observable on {0, 1, . . . ,T}, T <∞ if for every input u,

index
sets I, I ′ ⊆ [N] with M elements, attack vec. a ∈ AI and a′ ∈ AI′ ,

M. Chong ⟨m.s.t.chong@tue.nl⟩



Theorem: M-attack observability 10/22

System with N sensors:

{
x(k + 1)=Ax(k) + Bu(k),

yi (k) =Cix(k) + ai (k), i ∈ [N], k ∈ N≥0.

M-attack observability

The system is M-attack observable on {0, 1, . . . ,T}, T <∞ if for every input u, index
sets I, I ′ ⊆ [N] with M elements,

attack vec. a ∈ AI and a′ ∈ AI′ ,

M. Chong ⟨m.s.t.chong@tue.nl⟩



Theorem: M-attack observability 10/22

System with N sensors:

{
x(k + 1)=Ax(k) + Bu(k),

yi (k) =Cix(k) + ai (k), i ∈ [N], k ∈ N≥0.
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↑
(AI denotes the set of all vectors (a1, a2, . . . , aN) where aj ≡ 0, j ∈ [N]\I)
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System with N sensors:

{
x(k + 1)=Ax(k) + Bu(k),

yi (k) =Cix(k) + ai (k), i ∈ [N], k ∈ N≥0.

M-attack observability

The system is M-attack observable on {0, 1, . . . ,T}, T <∞ if for every input u, index
sets I, I ′ ⊆ [N] with M elements, attack vec. a ∈ AI and a′ ∈ AI′ , init. cond. x(0),
x ′(0), the following holds
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System with N sensors:

{
x(k + 1)=Ax(k) + Bu(k),

yi (k) =Cix(k) + ai (k), i ∈ [N], k ∈ N≥0.

M-attack observability

The system is M-attack observable on {0, 1, . . . ,T}, T <∞ if for every input u, index
sets I, I ′ ⊆ [N] with M elements, attack vec. a ∈ AI and a′ ∈ AI′ , init. cond. x(0),
x ′(0), the following holds

yi (t, x(0), u, a) = yi (t, x
′(0), u, a′), ∀t ∈ {0, 1, . . . ,T},∀i ∈ [N] =⇒ x(0) = x ′(0).

Theorem

The system is M-attack observable, if and only if

1. N > 2M, where M is the number of compromised sensors,

2. the system is observable via every yJ := (yi )i∈J sensors, where J ⊂ [N] with
N − 2M elements. (every (A,CJ ) pair is observable).
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From M-attack observability to an algorithm 11/22

System with N sensors:{
x(k + 1)=Ax(k) + Bu(k),

yi (k) =Cix(k) + ai (k), i ∈ [N], k ∈ N≥0.

Theorem

Suppose the following holds

1. N > 2M, where M is the number of compromised sensors,

2. the system is observable via every yJ := (yi )i∈J sensors, where J ⊂ [N] with
N − 2M elements. (every (A,CJ ) pair is observable).

Then there exists an estimator to provide estimate x̂ such that there exists a function
β ∈ KL satisfying
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System with N sensors:{
x(k + 1)=Ax(k) + Bu(k),
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Theorem

Suppose the following holds

1. N > 2M, where M is the number of compromised sensors,

2. the system is observable via every yJ := (yi )i∈J sensors, where J ⊂ [N] with
N − 2M elements. (every (A,CJ ) pair is observable).

Then there exists an estimator to provide estimate x̂ such that there exists a function
β ∈ KL satisfying

|x̂(k)− x(k)| ≤ β(|x̂(0)− x(0)|, k),
∀k ≥ 0, init. cond. x̂(0) and x(0).

M. Chong ⟨m.s.t.chong@tue.nl⟩



From M-attack observability to an algorithm 11/22

System with N sensors:{
x(k + 1)=Ax(k) + Bu(k),

yi (k) =Cix(k) + ai (k), i ∈ [N], k ∈ N≥0.

Theorem

Suppose the following holds

1. N > 2M, where M is the number of compromised sensors,

2. the system is observable via every yJ := (yi )i∈J sensors, where J ⊂ [N] with
N − 2M elements. (every (A,CJ ) pair is observable).

Then there exists an estimator to provide estimate x̂ such that there exists a function
β ∈ KL satisfying

|x̂(k)− x(k)| ≤ β(|x̂(0)− x(0)|, k)︸ ︷︷ ︸
independent of attack signals a

,

∀k ≥ 0, init. cond. x̂(0) and x(0).
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1. For each combination of N −M
(≥ N − 2M) sensors, construct an
estimator OP based on those sensors, that
is robust (input-to-state stable) w.r.t.
attack a.
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For this set, all combinations of N − 2M
sensors will also be attack-free. Handled
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Φ
x̂(t)

x̂P1
(t)

x̂P|P|(t)

x̂Q1
(t)

x̂Q|Q|(t)

Consistency mapping Φ to choose an estimate x̂ from
the multi-observer:

πP(k) := max
Q⊂P,|Q|=N−2M

|x̂Q(k)− x̂P(k)| , k ≥ 0.

x̂(k) = x̂σ(k)(k), σ(k) := argmin
P⊂[N],|P|=N−M

πP(k).
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x̂(k) = x̂σ(k)(k), σ(k) := argmin
P⊂[N],|P|=N−M

πP(k).

Theorem

Suppose system is M-attack observable, then

|x̂(k)− x(k)| ≤ β(|x̂(0)− x(0)|, k)︸ ︷︷ ︸
independent of attack signals a

k ≥ 0,

where β ∈ KL, for all x(0), x̂P(0), x̂Q(0) ∈ Rn.
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the multi-observer:

πP(k) := max
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|x̂Q(k)− x̂P(k)| , k ≥ 0.

x̂(k) = x̂σ(k)(k), σ(k) := argmin
P⊂[N],|P|=N−M

πP(k).

Theorem

Suppose system is M-attack observable, then

|x̂(k)− x(k)| ≤ β(|x̂(0)− x(0)|, k)︸ ︷︷ ︸
independent of attack signals a

k ≥ 0,

where β ∈ KL, for all x(0), x̂P(0), x̂Q(0) ∈ Rn.

Corollary: As t →∞, σ(t) chooses the attack-free set.
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When the model is known, we have

1. Necessary and sufficient conditions for secure
state estimation of LTI systems.

References:

▶ (Chong, Wakaiki, Hespanha; 2015) for LTI
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When the model is known, we have

1. Necessary and sufficient conditions for secure
state estimation of LTI systems.

2. When M sensors are under attack, we need

(i) N > 2M sensors for
|x̂(k)− x(k)| ≤ β(|x̂(0)− x(0)|, k)︸ ︷︷ ︸

independent of attack signals a

, ∀k.

(ii) N > M sensors for
x̂(k) ∈ X̂︸ ︷︷ ︸
set-based SSE

⊆ X← known, ∀k.

References:

▶ (Chong, Wakaiki, Hespanha; 2015) for LTI and (Chong, Sandberg, Hespanha; 2020) for NL;

▶ (Chong; 2025) for time-sampled and corrupted measurements;

▶ (Niazi, Alanwar, Chong, Johansson; 2023, 2025) on set-based SSE.
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What if the model is unknown?

Identify the attack-free set of sensors.
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Our approach 15/22

Recall that we consider a LTI system with N sensors, where M < N has been attacked:

x(k + 1) =Ax(k) + Bu(k), yi (k) = Cix(k) + ai (k), i ∈ [N], k ∈ N≥0.

▶ There must be one set of N −M sensors which is attack-free.
↓

▶ We don’t know which set→ Check every N −M set.

↓
▶ For every N −M set of sensors zj , we have the following model:

x(k + 1)=Ax(k) + Bu(k), zj(k) = CJj
x(k), k ∈ N≥0,

where Jj ⊂ [N] with cardinality N −M for j ∈ [nJ], where nJ :=
( N
N−M

)
.

Since the model (A,B,Ci ) are unknown, we will learn them from data!
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Data-based representations for LTI systems 16/22

According to Willems et. al.’s Fundamental Lemma,

Model-based representation

x(k + 1) = Ax(k) + Bu(k),
zj(k) = CJj

x(k), k ∈ N≥0,

for Jj ⊂ [N] with N −M elements and
j ∈ nJ.

→

Data-based representation

For j ∈ [nJ],

Xj(k + 1) = Λj

[
u(k)
Xj(k)

]
,

Λj := X̂j ,n+1,T

[
Un,T

X̂j ,n,T

]†
.
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According to Willems et. al.’s Fundamental Lemma,

Model-based representation

x(k + 1) = Ax(k) + Bu(k),
zj(k) = CJj

x(k), k ∈ N≥0,

for Jj ⊂ [N] with N −M elements and
j ∈ nJ.

→

Data-based representation

For j ∈ [nJ],

Xj(k + 1) = Λj

[
u(k)
Xj(k)

]
,

Λj := X̂j ,n+1,T

[
Un,T

X̂j ,n,T

]†
.

Un,T , X̂j ,n,T and X̂j ,n+1,T are data matrices:

X̂j ,n,T =
[
Xj(n) . . . Xj(n + T − 1)

]
,

X̂j ,n+1,T =
[
Xj(n + 1) . . . Xj(n + T )

]
,

Un,T =
[
u(n) . . . u(n + T − 1)

]
,

Xj(k) :=



zj(k − n)
...

zj(k − 1)

u(k − n)
...

u(k − 1)


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According to Willems et. al.’s Fundamental Lemma,
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x(k + 1) = Ax(k) + Bu(k),
zj(k) = CJj

x(k), k ∈ N≥0,

for Jj ⊂ [N] with N −M elements and
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→

Data-based representation

For j ∈ [nJ],

Xj(k + 1) = Λj

[
u(k)
Xj(k)

]
,

Λj := X̂j ,n+1,T

[
Un,T

X̂j ,n,T

]†
.

Theorem

Recall x ∈ Rn, u ∈ Rm.
Model-based rep. = Data-based rep.

only if

rank

[
Un,T

X̂j ,n,T

]
= m(n + 1) + (N −M)n with T ≥ (m + 1)((m + N −M)n + 1).
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A data-based attack detection algorithm : the main idea 17/22

Model-based representation

x(k + 1) = Ax(k) + Bu(k),
zj(k) = CJj

x(k), k ∈ N≥0,

for Jj ⊂ [N] with N −M elements and
j ∈ nJ.

→

Data-based representation

For j ∈ [nJ],

Xj(k + 1) = Λj

[
u(k)
Xj(k)

]
,

Λj := X̂j ,n+1,T

[
Un,T

X̂j ,n,T

]†
.

▶ Now, consider the online measurements z̃j = zj + aJi
.

▶ Recall that, we have N −M attack-free sensors. =⇒ one z̃j is attack-free.
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Data-based representation

For j ∈ [nJ], Xj(k + 1) = Λj

[
u(k)
Xj(k)

]
, Λj := X̂j ,n+1,T

[
Un,T

X̂j ,n,T

]†
.

Algorithm

1. (Offline) Construct Λj , ∀j ∈ [nJ].

2. (Offline) Apply input u of length n, collect online measurements of length T until

rank

[
Un,T

X̂j ,n,T

]
= m(n + 1) + (N −M)n with T ≥ (m + 1)((m + N −M)n + 1).

3. (Online) Apply test input data of length 1, collect the online data, and construct the
matrices Uk,1, X̂ j ,k,1, X̂ j ,k+1,1, ∀j ∈ [nJ].

4. (Online) Compute set of attack-free sensors

j∗[k + 1] ∈ argmin
j∈[nJ]

∣∣∣∣∣
∣∣∣∣∣X̂ j ,k+1,1 − Λj

[
Uk,1

X̂ j ,k,1

] ∣∣∣∣∣
∣∣∣∣∣
2

.
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Let x :=



l1
l̇1
l2
l̇2
l3
l̇3

. ẋ =



0 1 0 0 0 0
−k1
m1

−b1
m1

0 0 0 0

0 0 0 1 0 0
1
m2

0 −k2
m2

−b2
m2

0 0

0 0 0 0 0 1

0 0 1
m3

0 −k3
m3

−b3
m3


x +



0
1
m1

0
0
0
0

 u,

y1y2
y3

 =

 0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 x
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Based on

Sribalaji Anand, M. Chong, A. Texeira (2025)
Data-driven attack detection for networked control systems.

▶ A data-based attack identification algorithm with

offline learning + online data-based attacked sensor identification

▶ A fully online algorithm for certain attack types:

replay attacks and network delay attacks
▶ What about set-based approaches? Preliminary work presented at this CDC:

Z. Zhang, M. Niazi, M. Chong, K. Johansson, A. Alanwar
Data-driven Nonconvex Rechability Analysis using Exact Multiplication

Thursday. C03. 1715-1730. Oceania III.
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2. Need N > M for set-based convergence.

▶ Data-driven techniques are very useful, if we can overcome key challenges...

▶ First steps: A data-driven sensor attack identification algorithm for linear
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▶ Towards nonlinear and networked (hybrid) control systems!
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▶ PhD (4 years)
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Join my group at the Eindhoven University of Technology (TU/e) in the Netherlands!

▶ Proximity and close ties to the high-tech
industry in the region.

▶ TU/e has a vibrant group of active researchers
in the area of systems and control.

Get in touch: m.s.t.chong@tue.nl or https://www.michellestchong.com
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