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• Many engineering systems are complex and safety critical

Power networks, drones, self-driving cars,…

• Violating constraints may lead to catastrophic events 

Damages, accidents,…

• Need for systematic methods to design provably-safe policies

Control of safety-critical systems
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Given

• a nonlinear system
𝑥𝑡+1 = 𝑓(𝑥𝑡 , 𝑢𝑡)

over a domain 𝑥𝑡 , 𝑢𝑡 ∈ 𝒳 ×𝒰

• a specification (e.g., reach a region while 
avoiding others)

Find a policy
𝜋:𝒳 → 𝒰

such that the trajectories of the closed-loop 
system

𝑥𝑡+1 = 𝑓(𝑥𝑡 , 𝜋(𝑥𝑡))

satisfy the specification.

Problem statement
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2. Over-approximations

3. Lifted over-approximations

4. Conclusion

Outline

4



Nonlinear dynamics: 𝑥𝑡+1 = 𝑓 𝑥𝑡 , 𝑢𝑡 𝑥𝑡 , 𝑢𝑡 ∈ 𝒳 ×𝒰

Discrete-absractions:

How do we over-approximate? Abstractions
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Theorem (informal)

If the abstraction function 𝐴𝑥:𝒳 → 𝑄, 𝐴𝑢: 𝒰 
→ 𝒰𝑎 is such that for any 𝑥,
𝑓 𝑥, 𝑢 ∈ 𝐴𝑥

−1(𝑃𝑜𝑠𝑡 𝐴𝑥 𝑥 , 𝐴𝑢 𝑢 ) 
then any policy that enforces a reach-avoid 
specification can be concretized such that 
the trajectory of the original system also 
does so.
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Theorem (informal)

If the abstraction function 𝐴𝑥:𝒳 → 𝑄, 𝐴𝑢: 𝒰 
→ 𝒰𝑎 is such that for any 𝑥,
𝑓 𝑥, 𝑢 ∈ 𝐴𝑥

−1(𝑃𝑜𝑠𝑡 𝐴𝑥 𝑥 , 𝐴𝑢 𝑢 ) 
then any policy that enforces a reach-avoid 
specification can be concretized such that 
the trajectory of the original system also 
does so.

Abstraction can be learned: Abate, Soudjani, 
Mazo, Lavaei, etc… 



System over-approximation
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We trade nonlinearity for non-determinism
Much smaller state-space, dynamics on a graph!



Nonlinear dynamics: 𝑥𝑡+1 = 𝑓 𝑥𝑡 , 𝑢𝑡 𝑥𝑡 , 𝑢𝑡 ∈ 𝒳 ×𝒰

Linear approximation: 𝑓 𝑥, 𝑢 ≈ መ𝑓 𝑥, 𝑢 ≔ 𝐴𝑥 + 𝐵𝑢

No formal guarantees...

∀ 𝑥, 𝑢 ∈ 𝒳 ×𝒰: 𝑓 𝑥, 𝑢 − መ𝑓 𝑥, 𝑢 ∈ ℰ

𝑥𝑡+1 ∈ መ𝑓 𝑥𝑡 , 𝑢𝑡 ⊕ℰ ≝ መ𝑓 𝑥𝑡 , 𝑢𝑡 + 𝑒 𝑒 ∈ ℰ

System over-approximation
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𝑓 𝑥0, 𝑢0

𝑥0

𝑥1

𝑓 𝑥0, 𝑢0

𝑥0

𝑥1

Theorem (informal)

For any 𝑥0, if all trajectories of
𝑥𝑡+1 ∈ መ𝑓 𝑥𝑡 , 𝜋 𝑥𝑡 ⊕ℰ

satisfy a reach-avoid specification, then so 
does the trajectory of

𝑥𝑡+1 = 𝑓 𝑥𝑡 , 𝜋 𝑥𝑡 .

Include the error in the dynamics



System over-approximation
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Hybridization [1]
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𝒳1

𝑥𝑡+1 ∈ 𝐴1𝑥 + 𝐵1𝑢 ⊕ ℰ1

𝒳2

𝑥𝑡+1 ∈ 𝐴2𝑥 + 𝐵2𝑢 ⊕ ℰ2 … …

… … …

𝒳𝐾

𝑥𝑡+1 ∈ 𝐴𝐾𝑥 + 𝐵𝐾𝑢 ⊕ ℰ𝐾

Hybrid dynamics     𝑥𝑡+1 ∈ መ𝑓𝜎 𝑥 𝑥, 𝑢 ⊕ ℰ𝜎 𝑥 ≔ 𝐴𝜎 𝑥 𝑥 + 𝐵𝜎 𝑥 𝑢 ⊕ ℰ𝜎 𝑥

with partition function     𝜎:𝒳 → {1,… , 𝐾}

Universal approximator [1] 

Over a large domain 𝒳, the error set ℰ can be large → conservative results

Idea : Piece-wise affine over-approximation

[1] E. Asarin, T. Dang & A. Girard, “Hybridization methods for the analysis of nonlinear systems,” Acta Informatica, 2007

𝒳

… but complexity of synthesizing a policy increases with 𝐾 
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Lifted over-approximation
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Idea — Immersions, Koopman,… [Mezic, Brunton, Korda,…]: 

Lift the state to a higher dimensional space:

𝑧𝑡 = 𝜓 𝑥𝑡 ∈ ℝ𝑛𝑧

Linear approximation: 𝜓 𝑓 𝑥, 𝑢 ≈ መ𝑓 𝜓 𝑥 , 𝑢 ≔ 𝐴𝜓 𝑥 + 𝐵𝑢

No formal guarantees... Include the error in the dynamics

Linear over-approximation: 𝑧𝑡+1 ∈ መ𝑓 𝑧𝑡 , 𝑢𝑡 ⊕ℰ with

∀ 𝑥, 𝑢 ∈ 𝒳 ×𝒰: 𝜓 𝑓 𝑥, 𝑢 − መ𝑓 𝜓 𝑥 , 𝑢 ∈ ℰ

Include the original state in the lifting: 

𝜓 𝑥 =
𝑥

𝜙 𝑥

𝑧𝑡

𝑥𝑡

𝑧𝑡+1

𝑥𝑡+1

𝜓

𝑓(𝑥𝑡 , 𝑢𝑡)

ℝ𝑛𝑥

ℝ𝑛𝑧

𝑧 = 𝜓(𝑥)

𝑥 = 𝐼 0 𝑧

𝑥𝑡+1 = 𝑓 𝑥𝑡 , 𝑢𝑡 𝑧𝑡+1 ∈ መ𝑓 𝑧𝑡 , 𝑢𝑡 ⊕ℰ



Lifting specifications
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Preserves convexity 
Preserves polyhedrality 

Not convex 
(even when 𝑋 is)

ℝ𝑛𝑥

𝜓

ℝ𝑛𝑧
𝜓 𝑥 𝑥 ∈ 𝑋

𝑋

𝑧 = 𝜓(𝑥)

𝑥 = 𝐼 0 𝑧

𝑥𝑡+1 = 𝑓 𝑥𝑡 , 𝑢𝑡 𝑧𝑡+1 ∈ መ𝑓 𝑧𝑡 , 𝑢𝑡 ⊕ℰ

Reach-avoid specifications are in ℝ𝑛𝑥   →  They need to be lifted to ℝ𝑛𝑧

ℝ𝑛𝑥

𝜓

ℝ𝑛𝑧 𝑧 𝐼 0 𝑧 ∈ 𝑋

𝑋



Lifted over-approximation
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Theorem (informal)

For any 𝑥0, if all 𝑧𝑡 𝑡=0
𝑇  given by

𝑧𝑡+1 ∈ መ𝑓 𝑧𝑡 , 𝜋(𝑧𝑡) ⊕ ℰ
𝑧0 = 𝜓(𝑥0)

satisfy a lifted reach-avoid specification, 
then the trajectory of

𝑥𝑡+1 = 𝑓 𝑥𝑡 , 𝜋 𝜓 𝑥𝑡
satisfies the unlifted specification.

𝑧 = 𝜓(𝑥)
𝑥𝑡+1 = 𝑓 𝑥𝑡 , 𝑢𝑡 𝑧𝑡+1 ∈ መ𝑓 𝑧𝑡 , 𝑢𝑡 ⊕ℰ

Policy
concretization

𝜋𝑥 ≔ 𝜋𝑧 ∘ 𝜓 𝜋𝑧: ℝ
𝑛𝑧 → 𝒰

Policy
synthesis

𝑢𝑡 = 𝜋𝑧(𝜓(𝑥𝑡))
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Find 𝐴, 𝐵 and ℰ such that

 ∀ 𝑥, 𝑢 ∈ 𝒳 ×𝒰: 𝜓 𝑓 𝑥, 𝑢 − 𝐴𝜓 𝑥 − 𝐵𝑢 ∈ ℰ

with ℰ =×𝑖=1
𝑛𝑧 𝑚𝑖 , 𝑀𝑖

Computing linear lifted over-approximations
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Infinite dimensional 

Minimize nondeterminism

Assumptions

1. 𝑓 and 𝜓 are polynomials
2. 𝒳 and𝒰 are polytopes (or semi-algebraic sets)

Can be handled using
Sum-of-Squares optimization 

min
𝐴,𝐵,𝑚,𝑀

෍

𝑖=1

𝑛𝑧

𝑀𝑖 −𝑚𝑖 s. t. ∀ 𝑥, 𝑢 ∈ 𝒳 ×𝒰: 𝑚 ≤ 𝜓 𝑓 𝑥, 𝑢 − 𝐴𝜓 𝑥 − 𝐵𝑢 ≤ 𝑀



Find 𝐴, 𝐵 and ℰ such that

 ∀ 𝑥, 𝑢 ∈ 𝒳 ×𝒰: 𝜓 𝑓 𝑥, 𝑢 − 𝐴𝜓 𝑥 − 𝐵𝑢 ∈ ℰ

with ℰ =×𝑖=1
𝑛𝑧 𝑚𝑖 , 𝑀𝑖

Learning linear lifted over-approximations
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Infinite dimensional 

Minimize nondeterminism

Assumptions

1. Lipschitz constants of 𝑓 and 𝜓
2. Samples of 𝒳 ×𝒰

Can be handled by solving a 
Linear Program 

min
𝐴,𝐵,𝑚,𝑀

෍

𝑖=1

𝑛𝑧

𝑀𝑖 −𝑚𝑖 s. t. ∀ 𝑥, 𝑢 ∈ 𝒳 ×𝒰: 𝑚 ≤ 𝜓 𝑓 𝑥, 𝑢 − 𝐴𝜓 𝑥 − 𝐵𝑢 ≤ 𝑀



∎ Target set
∎ HJB (no guarantees)
∎ No lifting
∎ With lifting
∎ Trajectory

# cells 𝐾 Comp. Time [s]

No lifting 640 952.6

With lifting 118 245.4

Experiments : Backward reachable sets
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Inverted pendulum
ሷ𝜃 = 15 sin𝜃 + 30𝑢

Discretized with Euler 𝑑𝑡 = 0.1

Input set 𝒰 = [−0.35,0.35]

Lifting function 𝜓 𝜃
ሶ𝜃
=

𝜃
ሶ𝜃

sin 𝜃

Lifted hybridization with partition of 𝒳 only

Lifting reduces both conservatism and computation time
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Lifting as abstractions
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Nonlinear system
𝑥+ = 𝑓(𝑥, 𝑢)

Backward Reachable Set
𝑋𝑡

Hard

𝑧 = 𝜓(𝑥)
Koopman over-approximation
𝑧+ ∈ 𝐴𝑖𝑧 + 𝐵𝑖𝑢 +𝑊𝑖 if 𝑥 ∈ 𝐷𝑖𝑥 = 𝐶𝑧

Backward Reachable Set
𝑍𝑡

Easy
Inner approximates

Liftings give an alternative way of doing abstractions:
• Generalizes hybridization.
• Single linearization can be conservative or complex.
• Learning different over-approximations are learned over local subdomains 

(leading to a PWA system) for better accuracy:
- Experiments show that to obtain BRSs with similar sizes, the Koopman 

over-approximation requires less pieces than direct linearization 
(hybridization).

Why do we need hybridization in the lifted space? See also work on non-
existence of linear immersions for systems with multiple omega limit sets 
(Liu, Ozay, Sontag, Automatica’25)

Balim, Aspeel, Liu, Ozay, L-CSS’23

Inverted Pendulum
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