

Lifting as an Abstraction

Necmiye Ozay

Electrical Engineering and Computer Science & Robotics,
University of Michigan

CDC 2025 Pre-conference Workshop

Data-Driven Control of Autonomous Systems with Provable Guarantees

December 9, 2025

Control of safety-critical systems

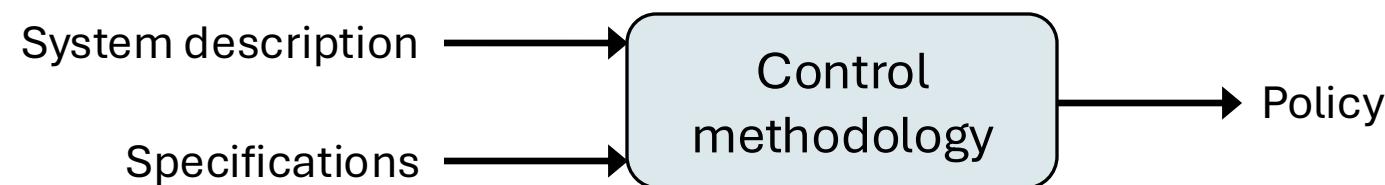
- Many engineering systems are complex and safety critical

Power networks, drones, self-driving cars,...

- Violating constraints may lead to catastrophic events

Damages, accidents,...

- Need for systematic methods to design provably-safe policies



Problem statement

Given

- a nonlinear system

$$x_{t+1} = f(x_t, u_t)$$

over a domain $(x_t, u_t) \in \mathcal{X} \times \mathcal{U}$

- a specification (e.g., reach a region while avoiding others)

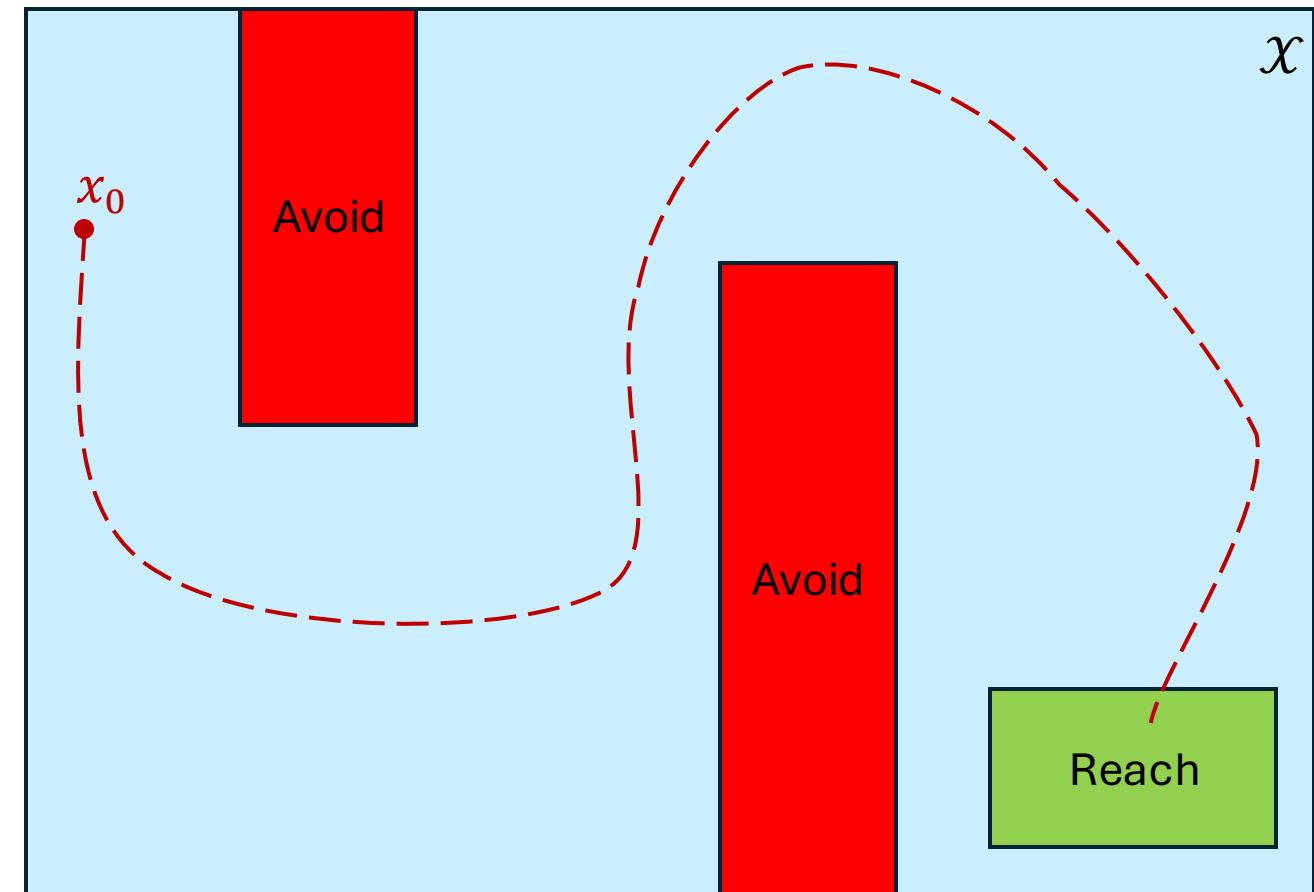
Find a policy

$$\pi: \mathcal{X} \rightarrow \mathcal{U}$$

such that the trajectories of the closed-loop system

$$x_{t+1} = f(x_t, \pi(x_t))$$

satisfy the specification.



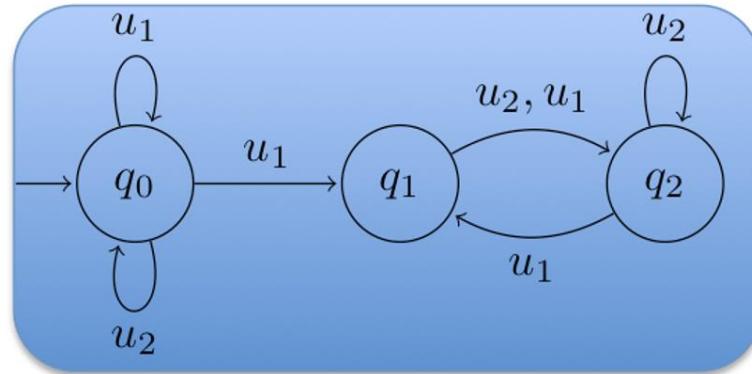
Outline

1. Introduction
2. **Over-approximations**
3. Lifted over-approximations
4. Conclusion

How do we over-approximate? Abstractions

Nonlinear dynamics: $x_{t+1} = f(x_t, u_t)$ $(x_t, u_t) \in \mathcal{X} \times \mathcal{U}$

Discrete-absracts:



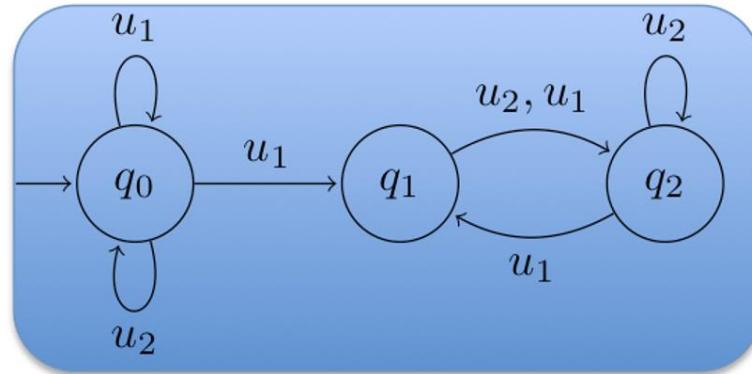
Theorem (informal)

If the abstraction function $A_x: \mathcal{X} \rightarrow Q, A_u: \mathcal{U} \rightarrow \mathcal{U}_a$ is such that for any x , $f(x, u) \in A_x^{-1}(\text{Post}(A_x(x), A_u(u)))$ then any policy that enforces a reach-avoid specification can be concretized such that the trajectory of the original system also does so.

How do we over-approximate? Abstractions

Nonlinear dynamics: $x_{t+1} = f(x_t, u_t)$ $(x_t, u_t) \in \mathcal{X} \times \mathcal{U}$

Discrete-absractions:

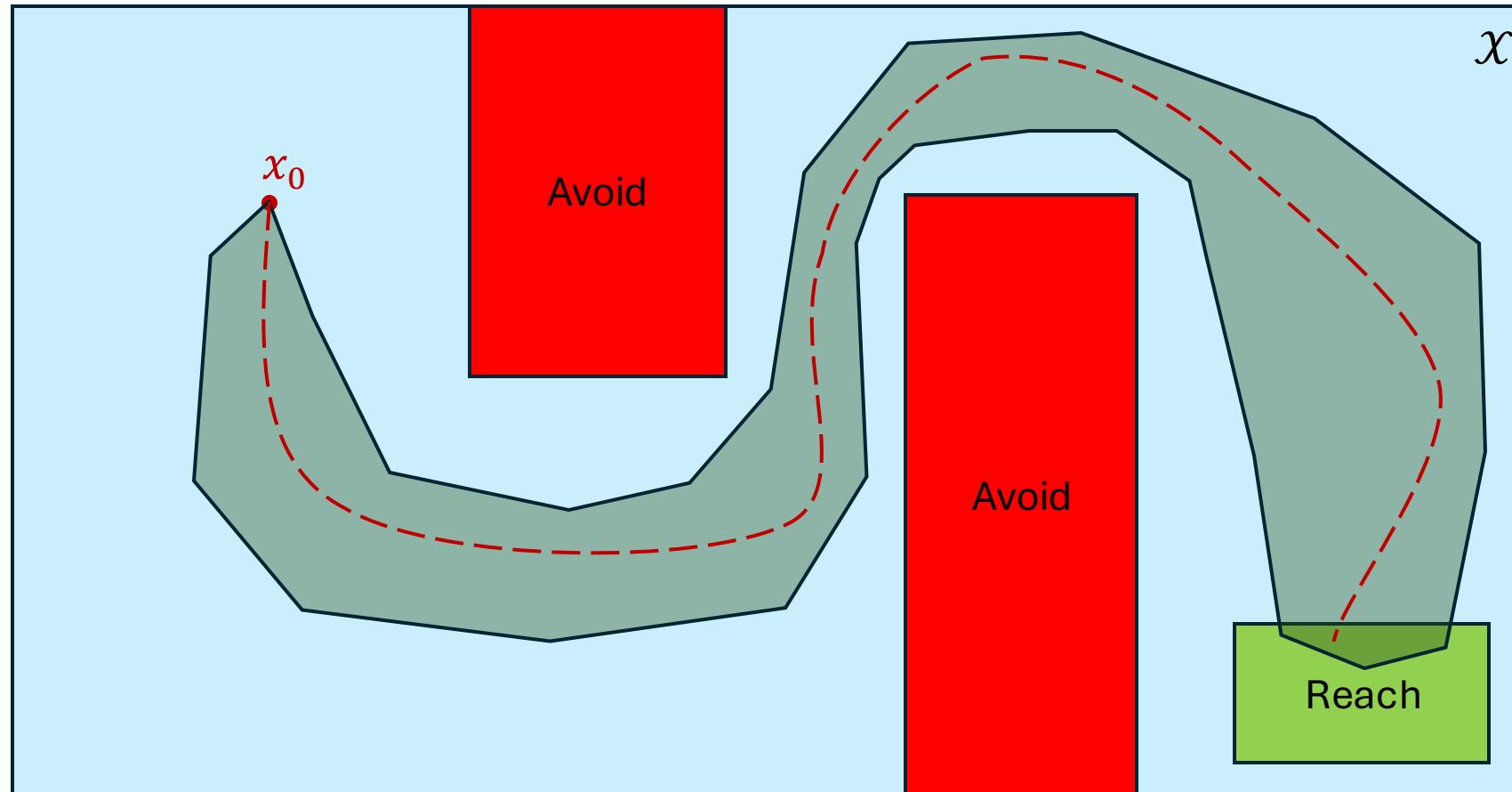


Abstraction can be learned: Abate, Soudjani, Mazo, Lavaei, etc...

Theorem (informal)

If the abstraction function $A_x: \mathcal{X} \rightarrow Q, A_u: \mathcal{U} \rightarrow \mathcal{U}_a$ is such that for any x , $f(x, u) \in A_x^{-1}(\text{Post}(A_x(x), A_u(u)))$ then any policy that enforces a reach-avoid specification can be concretized such that the trajectory of the original system also does so.

System over-approximation



We trade nonlinearity for non-determinism
Much smaller state-space, dynamics on a graph!

System over-approximation

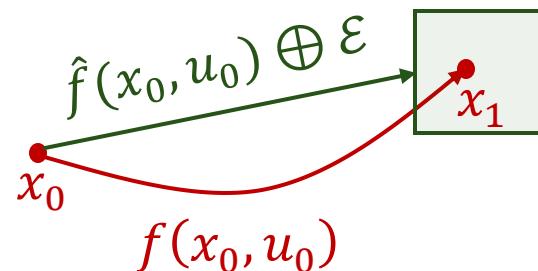
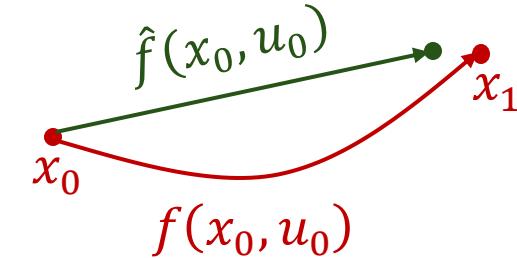
Nonlinear dynamics: $x_{t+1} = f(x_t, u_t)$ $(x_t, u_t) \in \mathcal{X} \times \mathcal{U}$

Linear approximation: $f(x, u) \approx \hat{f}(x, u) := Ax + Bu$

No formal guarantees... **Include the error in the dynamics**

$\forall (x, u) \in \mathcal{X} \times \mathcal{U}: f(x, u) - \hat{f}(x, u) \in \mathcal{E}$

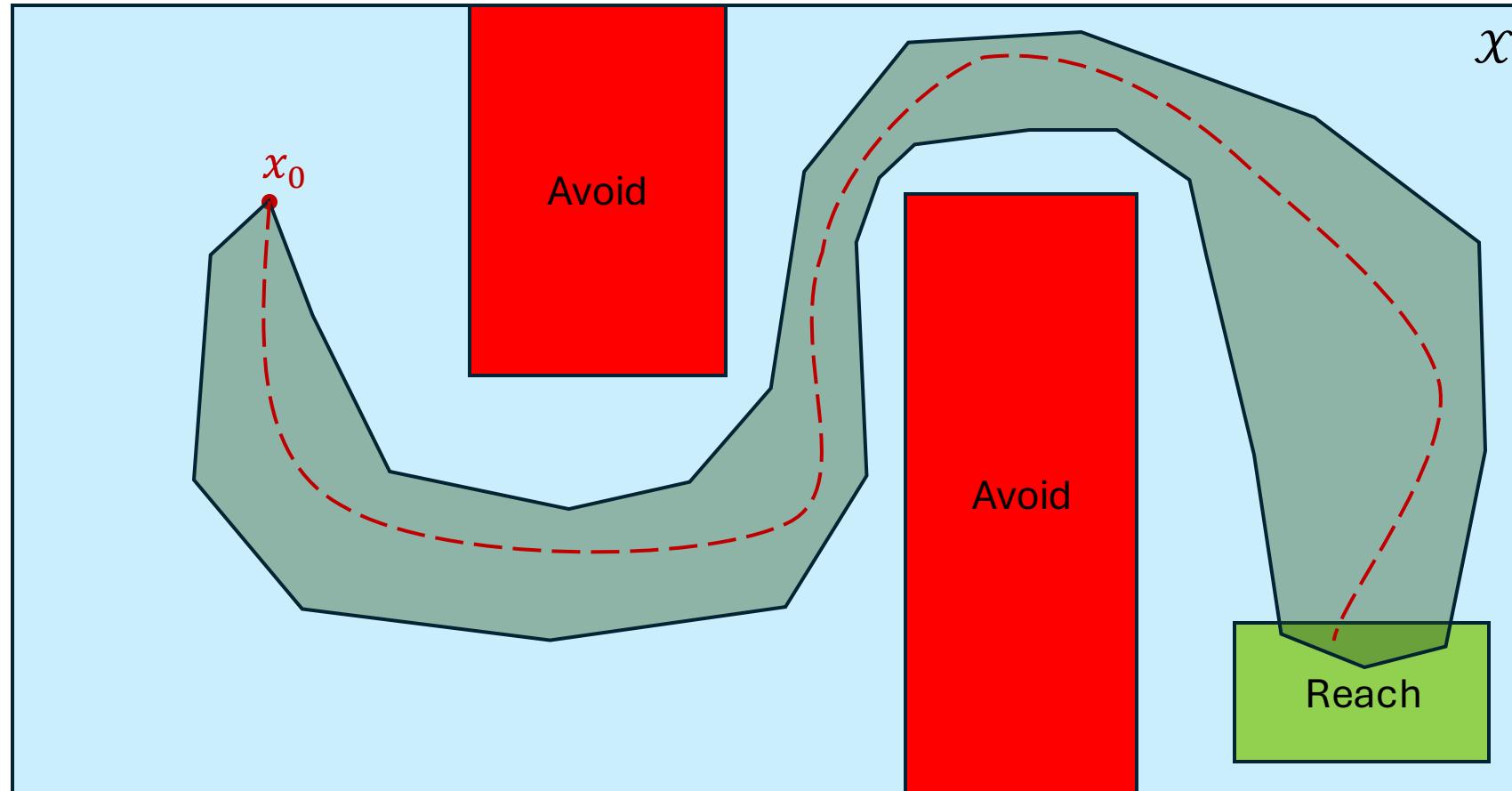
$x_{t+1} \in \hat{f}(x_t, u_t) \oplus \mathcal{E} \stackrel{\text{def}}{=} \{\hat{f}(x_t, u_t) + e \mid e \in \mathcal{E}\}$



Theorem (informal)

For any x_0 , if all trajectories of
 $x_{t+1} \in \hat{f}(x_t, \pi(x_t)) \oplus \mathcal{E}$
satisfy a reach-avoid specification, then so
does the trajectory of
 $x_{t+1} = f(x_t, \pi(x_t)).$

System over-approximation



We trade nonlinearity for non-determinism

Hybridization [1]

Over a large domain \mathcal{X} , the error set \mathcal{E} can be large \rightarrow conservative results

Idea **Piece-wise affine over-approximation**

\mathcal{X}_1	\mathcal{X}_2	...	\mathcal{X}
$x_{t+1} \in A_1 x + B_1 u \oplus \mathcal{E}_1$	$x_{t+1} \in A_2 x + B_2 u \oplus \mathcal{E}_2$
...	\mathcal{X}_K
			$x_{t+1} \in A_K x + B_K u \oplus \mathcal{E}_K$

Hybrid dynamics $x_{t+1} \in \hat{f}_{\sigma(x)}(x, u) \oplus \mathcal{E}_{\sigma(x)} := A_{\sigma(x)} x + B_{\sigma(x)} u \oplus \mathcal{E}_{\sigma(x)}$

with partition function $\sigma: \mathcal{X} \rightarrow \{1, \dots, K\}$

Universal approximator [1] ... but complexity of synthesizing a policy increases with K

[1] E. Asarin, T. Dang & A. Girard, “Hybridization methods for the analysis of nonlinear systems,” Acta Informatica, 2007

Outline

1. Introduction
2. Over-approximations
3. **Lifted over-approximations**
4. Conclusion

Lifted over-approximation

Idea — Immersions, Koopman,... [Mezic, Brunton, Korda,...]:

Lift the state to a higher dimensional space:

$$z_t = \psi(x_t) \in \mathbb{R}^{n_z}$$

Linear approximation: $\psi(f(x, u)) \approx \hat{f}(\psi(x), u) := A\psi(x) + Bu$

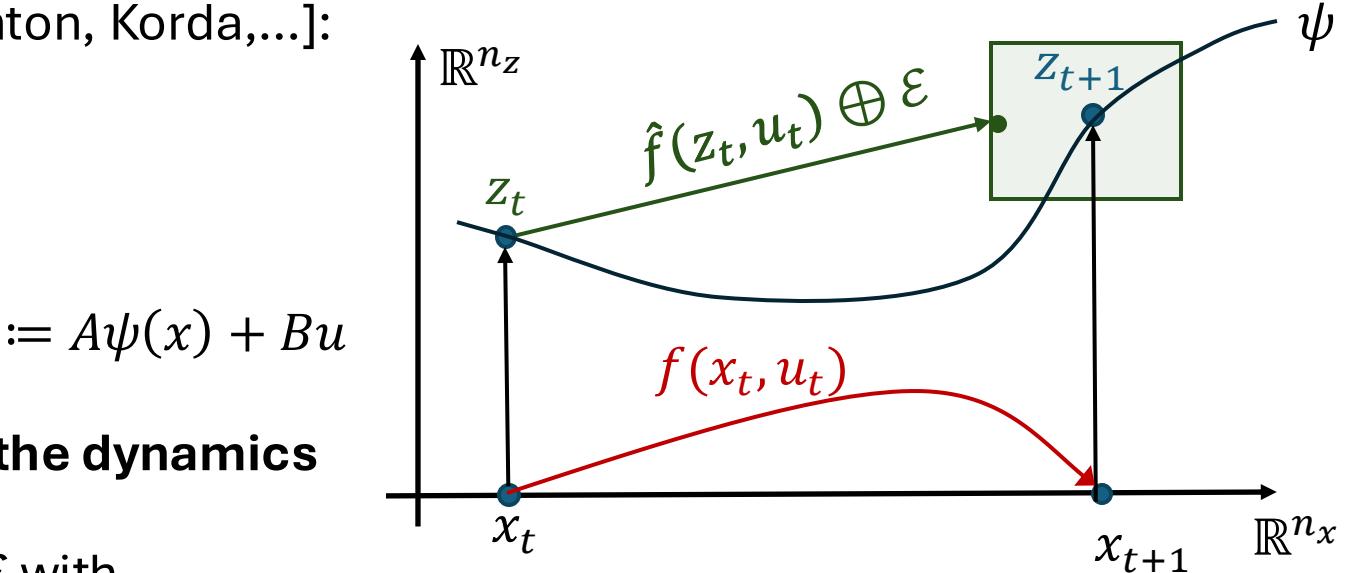
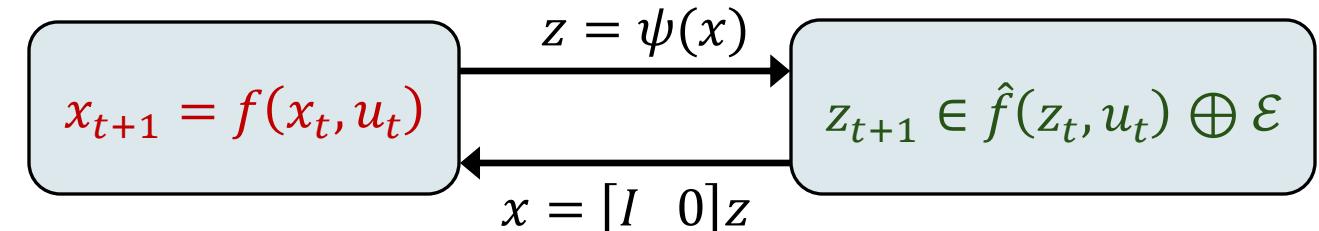
No formal guarantees... **Include the error in the dynamics**

Linear over-approximation: $z_{t+1} \in \hat{f}(z_t, u_t) \oplus \mathcal{E}$ with

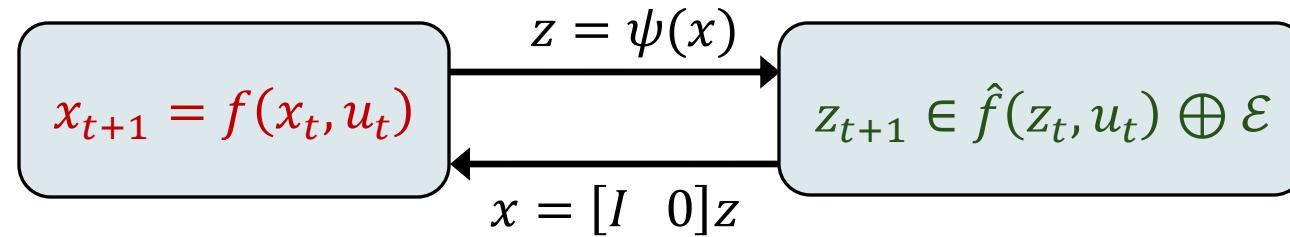
$\forall (x, u) \in \mathcal{X} \times \mathcal{U}: \psi(f(x, u)) - \hat{f}(\psi(x), u) \in \mathcal{E}$

Include the original state in the lifting:

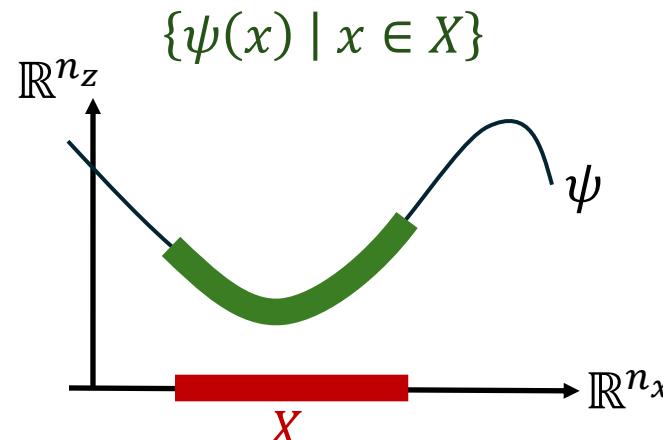
$$\psi(x) = \begin{bmatrix} x \\ \phi(x) \end{bmatrix}$$



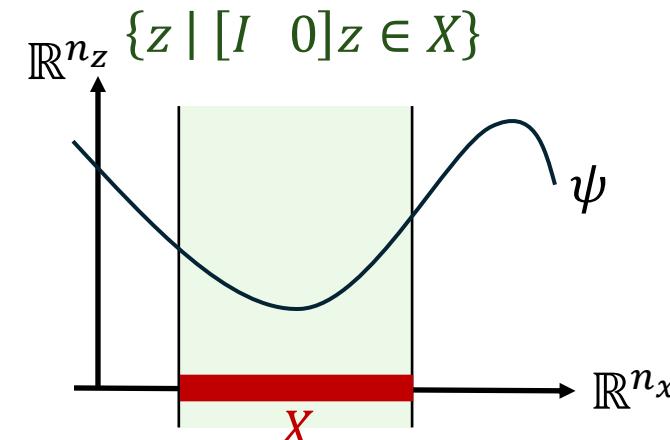
Lifting specifications



Reach-avoid specifications are in \mathbb{R}^{n_x} → They need to be lifted to \mathbb{R}^{n_z}

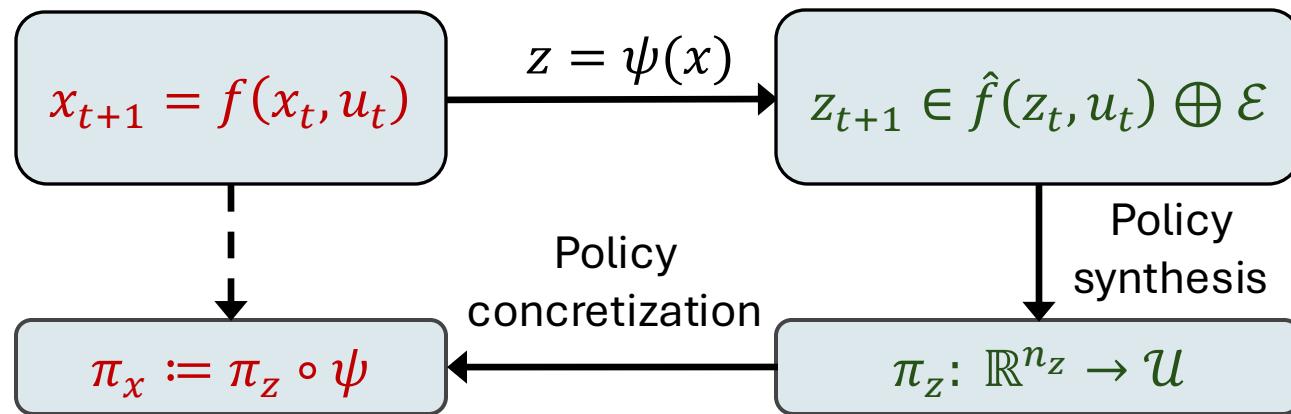


Not convex 😞
(even when X is)



Preserves convexity 😊
Preserves polyhedrality 😊

Lifted over-approximation



$$u_t = \pi_z(\psi(x_t))$$

Theorem (informal)

For any x_0 , if all $(z_t)_{t=0}^T$ given by

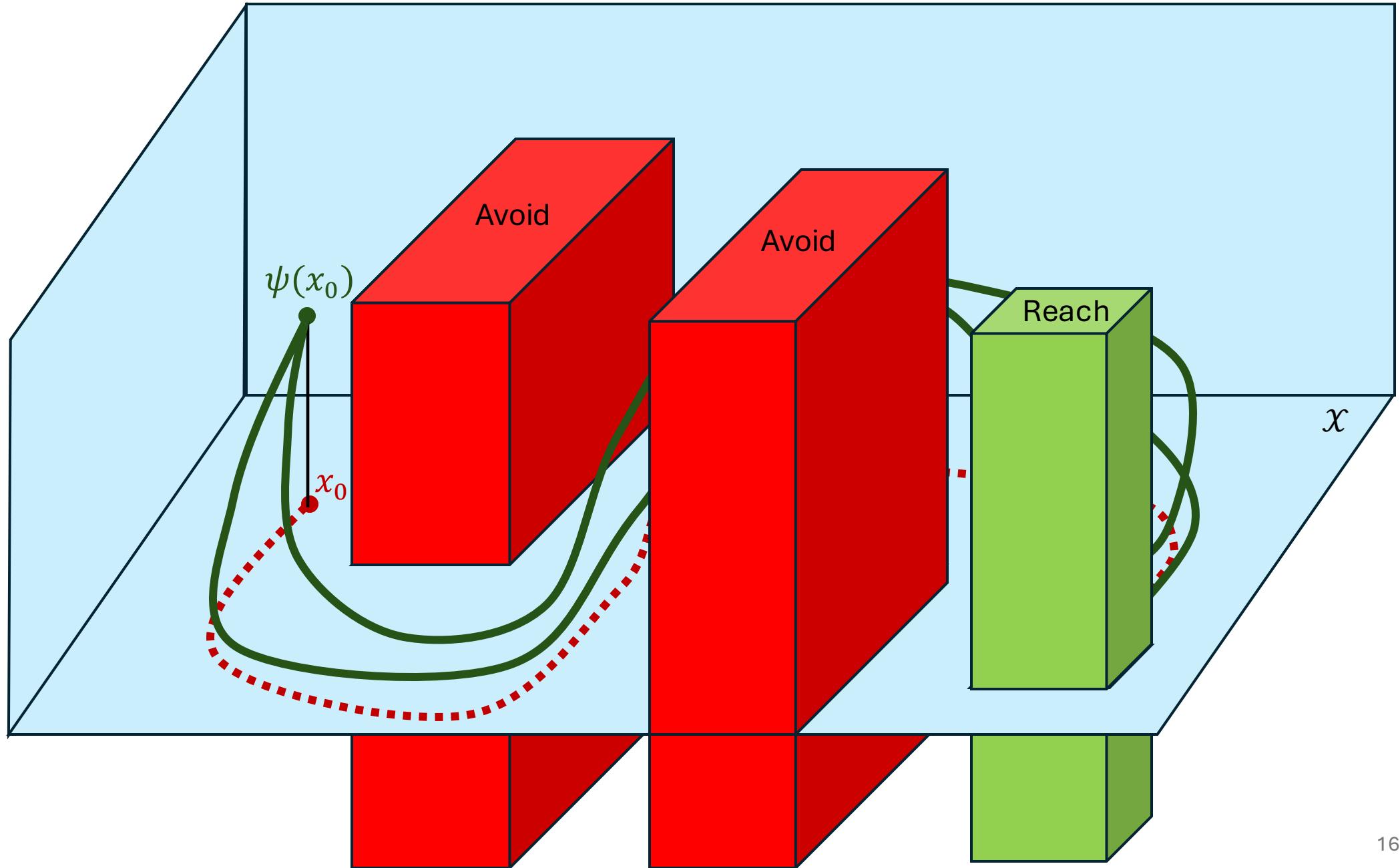
$$z_{t+1} \in \hat{f}(z_t, \pi(z_t)) \oplus \mathcal{E}$$
$$z_0 = \psi(x_0)$$

satisfy a **lifted** reach-avoid specification, then the trajectory of

$$x_{t+1} = f(x_t, \pi(\psi(x_t)))$$

satisfies the unlifted specification.







Computing linear lifted over-approximations

Find A, B and \mathcal{E} such that

$$\forall (x, u) \in \mathcal{X} \times \mathcal{U}: \psi(f(x, u)) - A\psi(x) - Bu \in \mathcal{E}$$

with $\mathcal{E} = \times_{i=1}^{n_z} [m_i, M_i]$

$$\min_{A, B, m, M} \sum_{i=1}^{n_z} M_i - m_i \quad \text{s. t. } \forall (x, u) \in \mathcal{X} \times \mathcal{U}: m \leq \psi(f(x, u)) - A\psi(x) - Bu \leq M$$

Minimize nondeterminism

Infinite dimensional

Assumptions

1. f and ψ are polynomials
2. \mathcal{X} and \mathcal{U} are polytopes (or semi-algebraic sets)

Can be handled using
Sum-of-Squares optimization

Learning linear lifted over-approximations

Find A, B and \mathcal{E} such that

$$\forall (x, u) \in \mathcal{X} \times \mathcal{U}: \psi(f(x, u)) - A\psi(x) - Bu \in \mathcal{E}$$

with $\mathcal{E} = \times_{i=1}^{n_z} [m_i, M_i]$

$$\min_{A, B, m, M} \sum_{i=1}^{n_z} M_i - m_i \quad \text{s. t. } \forall (x, u) \in \mathcal{X} \times \mathcal{U}: m \leq \psi(f(x, u)) - A\psi(x) - Bu \leq M$$

Minimize nondeterminism

Infinite dimensional

Assumptions

1. Lipschitz constants of f and ψ
2. Samples of $\mathcal{X} \times \mathcal{U}$

Can be handled by solving a Linear Program

Experiments : Backward reachable sets

Inverted pendulum

$$\ddot{\theta} = 15 \sin \theta + 30u$$

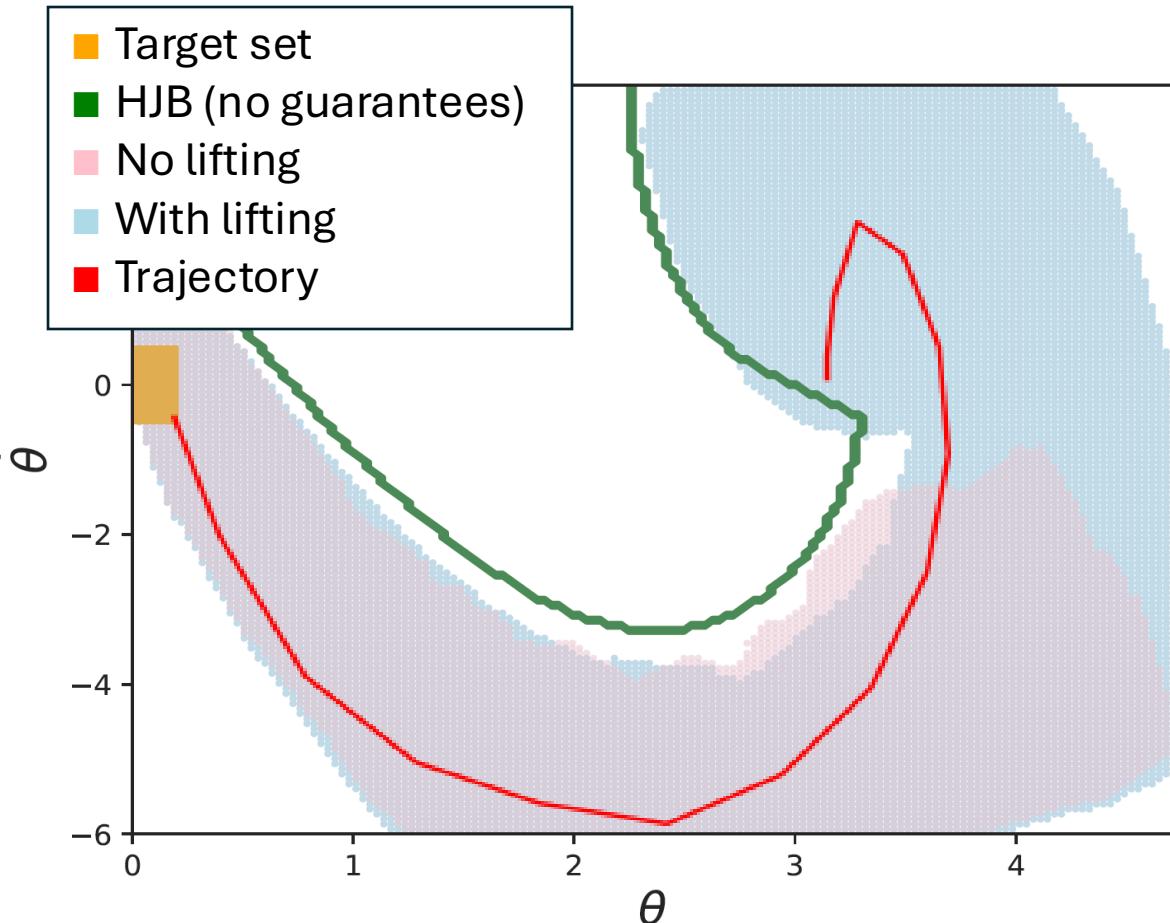
Discretized with Euler $dt = 0.1$

Input set $\mathcal{U} = [-0.35, 0.35]$

Lifting function $\psi \left(\begin{bmatrix} \theta \\ \dot{\theta} \end{bmatrix} \right) = \begin{bmatrix} \theta \\ \dot{\theta} \\ \sin \theta \end{bmatrix}$

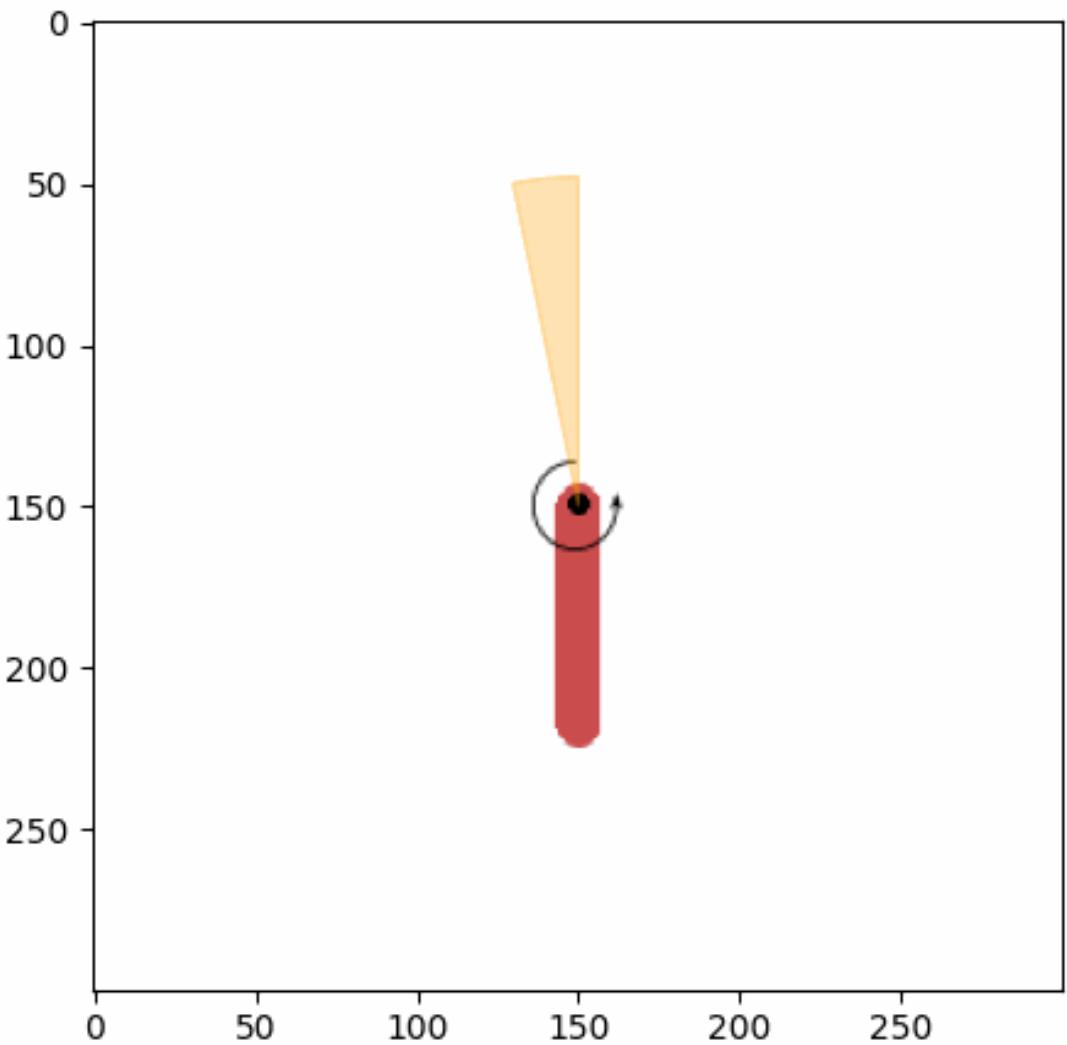
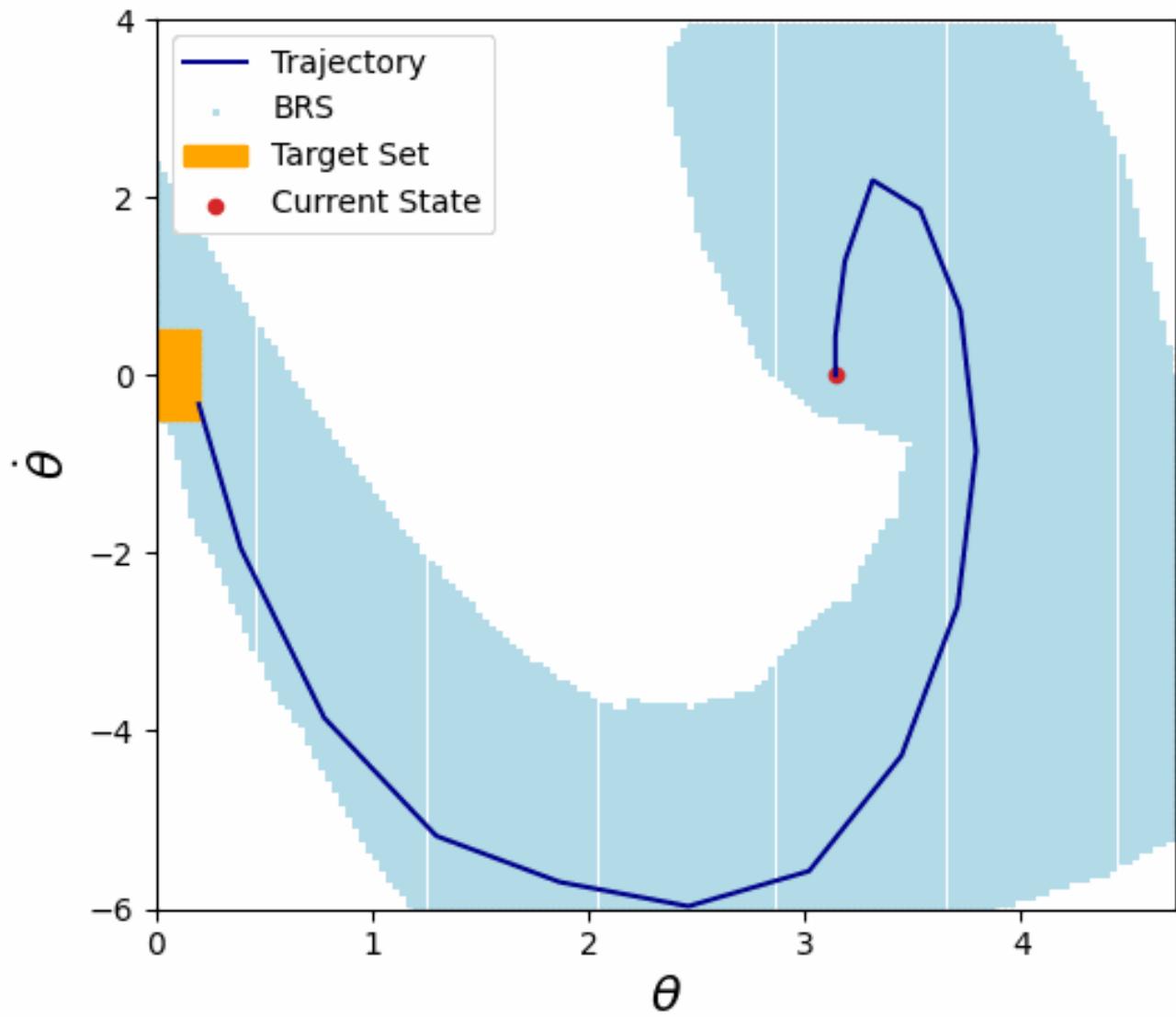
Lifted hybridization with partition of \mathcal{X} only

	# cells K	Comp. Time [s]
No lifting	640	952.6
With lifting	118	245.4



Lifting reduces both conservatism and computation time

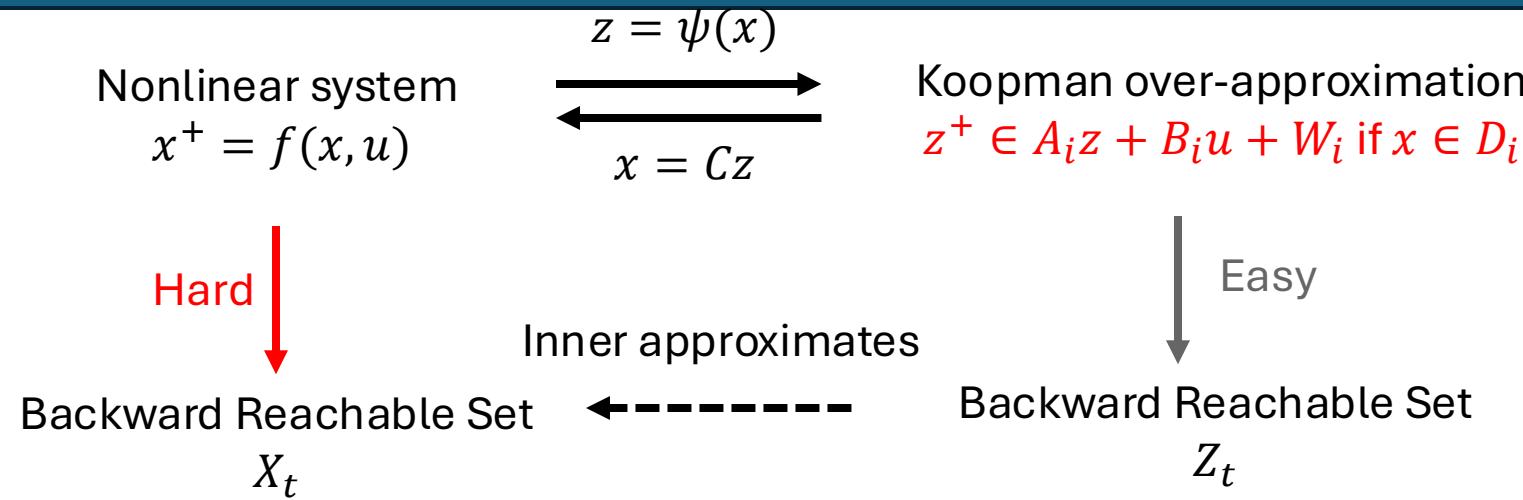
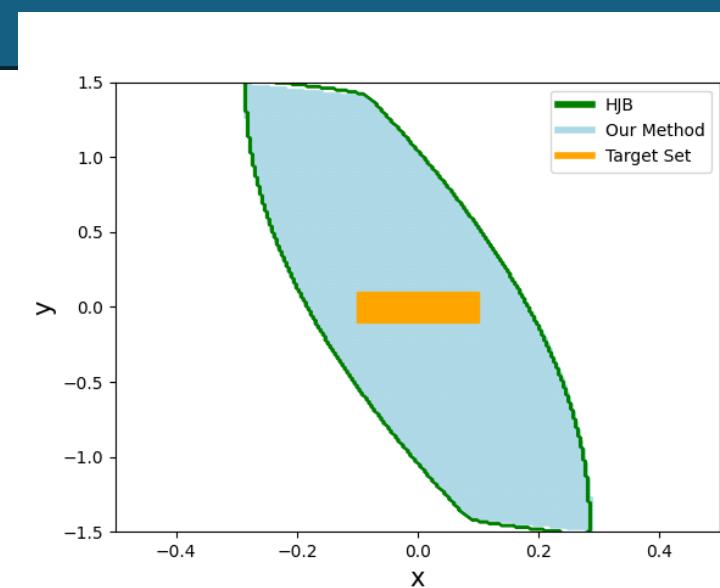
$t = 0$



Outline

1. Introduction
2. Over-approximations
3. Lifted over-approximations
4. Conclusion

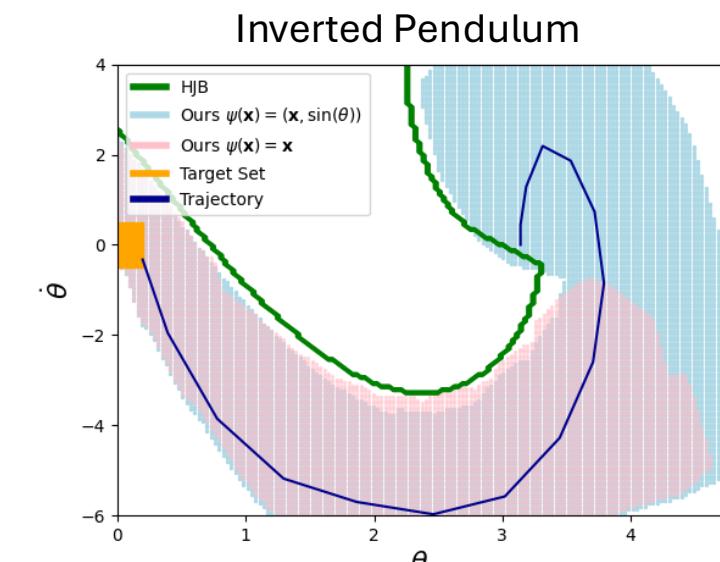
Lifting as abstractions



Liftings give an alternative way of doing abstractions:

- Generalizes hybridization.
- Single linearization can be conservative or complex.
- Learning different over-approximations are learned over local subdomains (leading to a PWA system) for better accuracy:
 - Experiments show that to obtain BRSs with similar sizes, the Koopman over-approximation requires less pieces than direct linearization (hybridization).

Why do we need hybridization in the lifted space? See also work on [non-existence of linear immersions](#) for systems with multiple omega limit sets (Liu, Ozay, Sontag, Automatica'25)



References & collaborators

- Haldun Balim, Antoine Aspeel, Zexiang Liu, Necmiye Ozay (2023). Koopman-inspired implicit backward reachable sets for unknown nonlinear systems. *IEEE Control Systems Letters*.
- Antoine Aspeel, Necmiye Ozay (2024). A simulation preorder for koopman-like lifted control systems. *IFAC-PapersOnLine*.
- Zexiang Liu, Necmiye Ozay, Eduardo Sontag (2025). “Properties of Immersions for Systems with Multiple Limit Sets with Implications to Learning Koopman Embeddings”, *Automatica*.

Haldun Balim

Zexiang Liu

Antoine Aspeel

Eduardo Sontag