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Control of safety-critical systems

* Many engineering systems are complex and safety critical

Power networks, drones, self-driving cars, ...

* Violating constraints may lead to catastrophic events

Damages, accidents,...

* Need for systematic methods to design provably-safe policies

System description Control |
thodol Policy
Specifications Y




Problem statement

Given

* anonlinear system
Xeyr = f(Xe Ue)
over adomain (x;,u;) € X XU

* aspecification (e.g., reach aregion while
avoiding others)

Find a policy
X ->U

such that the trajectories of the closed-loop
system

Xer1 = f(xe (X))

satisfy the specification.
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How do we over-approximate? Abstractions

Nonlinear dynamics: x;.1 = f(xe,uy)  (x,,u) €EX XU

Discrete-absractions:

Theorem (informal)

If the abstraction function 4,: X — Q,A,: U
— U, is such that for any x,

f(x,u) € Ax*(Post(A(x), Ay (1))

then any policy that enforces a reach-avoid
specification can be concretized such that
the trajectory of the original system also
does so.




How do we over-approximate? Abstractions

Nonlinear dynamics: x;.1 = f(xe,uy)  (x,,u) €EX XU

Discrete-absractions:

Theorem (informal)

If the abstraction function 4,: X — Q,A,: U
— U, is such that for any x,

f(x,u) € Ax*(Post(A(x), Ay (1))

then any policy that enforces a reach-avoid
Abstraction can be learned: Abate, Soudjani, specification can be concretized such that
Mazo, Lavael, etc... the trajectory of the original system also
does so.




System over-approximation

We trade nonlinearity for non-determinism
Much smaller state-space, dynamics on a graph! 7



System over-approximation

Nonlinear dynamics: x;.1 = f(xe,uy)  (x,,u) €EX XU

) f(xo'“'")
Linear approximation: f(x,u) = f(x,u) = Ax + Bu 6&1
X0

No formal gua rantees...QInclude the error in the dynamics f(xo,up)

V(e u) € X xU: flx,u) — flx,u) €E

Xer1 € o u) @ € & {f(xe,u,) +ele € €} Theorem (informal)

For any x,, if all trajectories of

Xerq1 € floxe,m(x)) B E

. ®E
f(XO’U’O) /‘;cl satisfy a reach-avoid specification, then so
b does the trajectory of
0

f(xo,uo) Xt+1 = f(xt) T[(xt))-




System over-approximation

We trade nonlinearity for non-determinism



Hybridization 1

Over a large domain X, the error set £ can be large = conservative results
Idea Q: Piece-wise affine over-approximation

X1 X2

Xey1 €EA1x+Biu @ &, Xey1 EArx +B,u @ €&,

Xk

Xep1 €E Agx + Byu @ Ex

Hybrid dynamics x;,1 € fa(x) (x,u) B Eox) = As)X + Bonu D Exx
with partition function o0:X - {1, ...,K}
Universal approximator [1] @ but complexity of synthesizing a policy increases with K @

[1]E. Asarin, T. Dang & A. Girard, “Hybridization methods for the analysis of nonlinear systems,” Acta Informatica, 2007
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Lifted over-approximation

Idea — Immersions, Koopman,... [Mezic, Brunton, Korda,...]: X _— ()

. . . . . R" ® & “t+1
Lift the state to a higher dimensional space: f(zt»ut) //
ze = P(x) € R™ Zt
{L

Linear approximation: Y(f(x, 1)) ~ f (P (x),w) = Ap(x) + Bu £ u,)

No formal guarantees... anclude the error in the dynamics

. . . 2 . X
Linear over-approximation: z,,; € f(z.,u,) @ & with t+l

V(x,u) € X X U: 1/J(f(x, u)) — f(x),u) € €

Include the original state in the lifting: N\ Zz2=Y(x)
thﬂ = f(xtrut)J‘ ’(Zt+1 € f(zp,u) @ SJ

Px) = [cl)zcx)] x=1[I 0]z >

12



Lifting specifications

N Z=YP(x)
{xtﬂ = f(xe, up) {Zt+1 € f(zs,up) ® 5}

P g

x=[I 0]z
Reach-avoid specifications are in R"* - They need to be lifted to R"=

7z {Y&) | x € X} jee (2111 0]z € X)

\ P \\ /Ny

R™x - — R
X X

Not convex @ Preserves convexity @
(evenwhen X is) Preserves polyhedrality @
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Lifted over-approximation

r Theorem (informal)

w z = P(x) For any x,, if all (z;){-, given by
th+1 — f(xt;ut)J {ZHl € f(Zt,ut) $P SJ Zipq € f(Zt:T[(Zt)) D E

I Zg = l/)(xO)
: Policy Policy satisfy a lifted reach-avoid specification,
{, Concretlzat|on synthesis then the trajectory of

[ 77: lp ]< T[Z: an —> u ] xt+1 - f(xt, T[(l/)(xt)))

satisfies the unlifted specification.

ur =, (P(x))

14
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Computing linear lifted over-approximations

Find 4, B and &£ such that
V(x,u) € X X U: 1/)(f(x, u)) —AY(x) —Bu€é&

with € =x2, [m;, M;] / Minimize nondeterminism

min EMi —m;| st [Vow) eX XU | m<Y(flx,w) —APp(x) —Bu<M
i=1

ABmM ————
— |nfinite dimensional
Assumptions @ ,
: — Can be handled using
1. f andi are polynomials , . Sum-of-Squares optimization
2. X and U are polytopes (or semi-algebraic sets) @
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Learning linear lifted over-approximations

Find 4, B and £ such that

V(x,u) € X X U: 1/)(f(x, u)) —AY(x) —Bu€é&

with € =x2, [m;, M;] / Minimize nondeterminism

Ny
min EMi —m;| st [Vow) eX XU | m<Y(flx,w) —APp(x) —Bu<M
A,Bom,M = ———

=

— |nfinite dimensional

®

Assumptions — Can be handled by solving a
1. Lipschitz constants of f and Y Linear Program @

2. Samplesof X XU
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Experiments : Backward reachable sets

Inverted pendulum Target set
6 = 15sin 6 + 30u m HJB (no guarantees)
No lifting
Discretized with Euler dt = 0.1 With lifting
m Trajectory
Input setU = [—0.35,0.35] 0.
9 D
Lifting function ([6]) — [ 6 ] ~2
6 .
sin 6
—4 -
Lifted hybridization with partition of X only
#cellsK Comp. Time [s] -6 . : . :
0 1 2 3 4
No lifting 640 952.6 6

Lifting reduces both conservatism and computation time
With lifting 118 245.4 g p
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Lifting as abstractions

Z = — H|B
Nonlinear system > Koopman over-approximation o] ?ii;i”fél?"
xt = f(x,u) < x = Cz zt € A;z+ Bju+ W, ifx € D; N
Hard Easy o
Inner approximates >
Backward Reachable Set *======= Backward Reachable Set 101
Xt Zy 15— — - = -

Liftings give an alternative way of doing abstractions: Inverted Pendulum

* Generalizes hybridization. T
* Single linearization can be conservative or complex. A S
* Learning different over-approximations are learned over local subdomains TN e et
(leading to a PWA system) for better accuracy: o
- Experiments show that to obtain BRSs with similar sizes, the Koopman 'S
over-approximation requires less pieces than direct linearization 7]
(hybridization). N
Why do we need hybridization in the lifted space? See also work on non-
existence of linearimmersions for systems with multiple omega limit sets % ; ; ; ;

e

(Liu, Ozay, Sontag, Automatica’25) . . v
Balim, Aspeel, Liu, Ozay, L-CSS’23
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