

# Inverse Optimization: An Efficient Learning Framework for Complex Behaviors

**Peyman Mohajerin Esfahani**

University of Toronto & TU Delft

*IEEE Conference on Decision and Control*

*December 2025*

# Outline

- Supervised Learning
- Inverse Optimization
- Applications

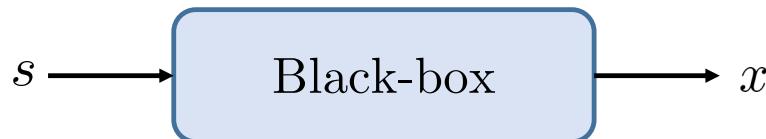
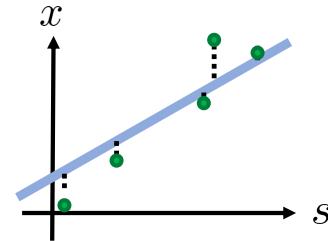
# Outline

- Supervised Learning
  - Two challenges in functions approximation
- Inverse optimization
- Applications

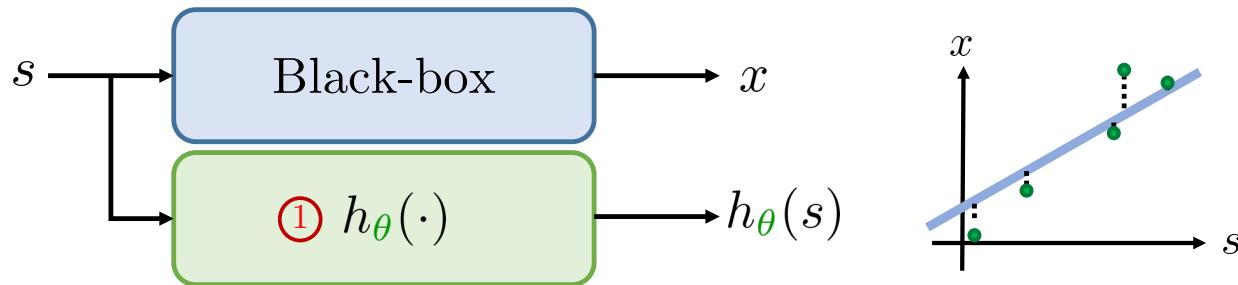
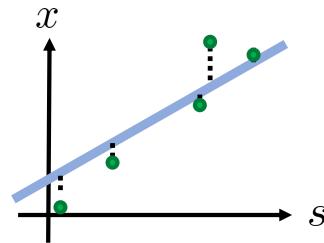
# Supervised Learning



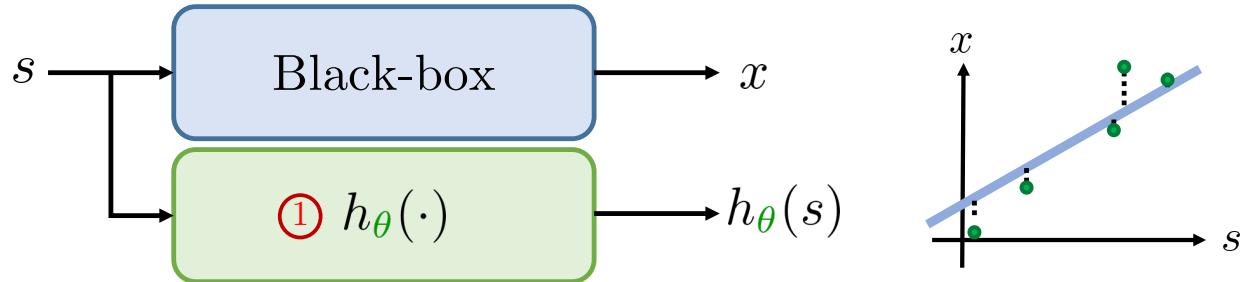
# Supervised Learning



# Supervised Learning

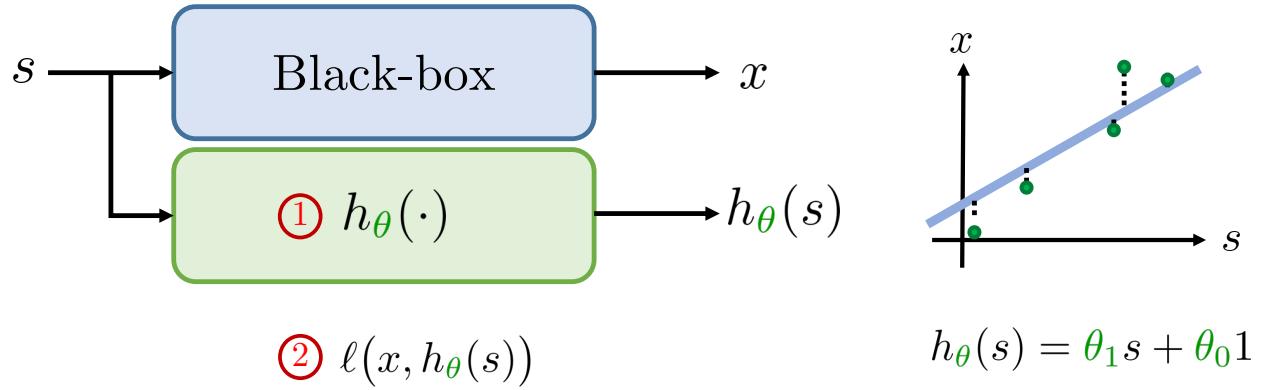


# Supervised Learning

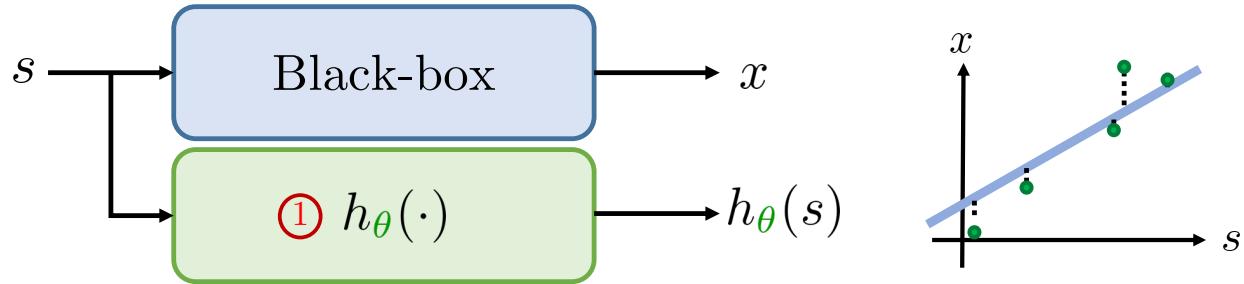


$$h_{\theta}(s) = \theta_1 s + \theta_0 1$$

# Supervised Learning

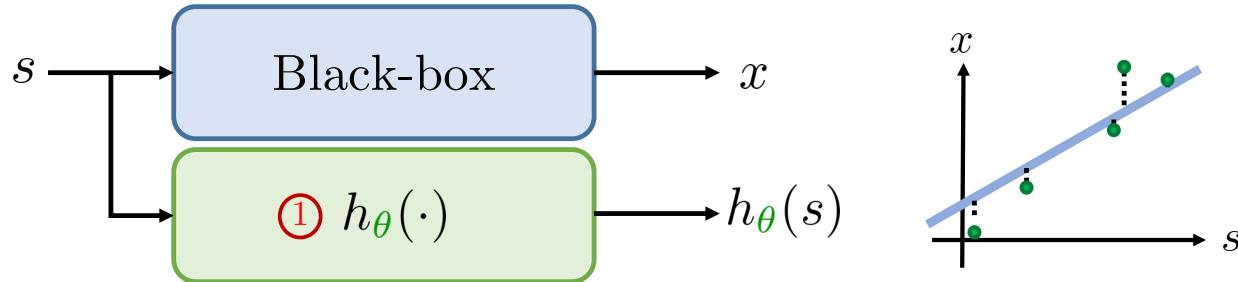


# Supervised Learning



$$\textcircled{2} \quad \ell(x, h_{\theta}(s)) = \|x - h_{\theta}(s)\|^2 \quad h_{\theta}(s) = \theta_1 s + \theta_0 1$$

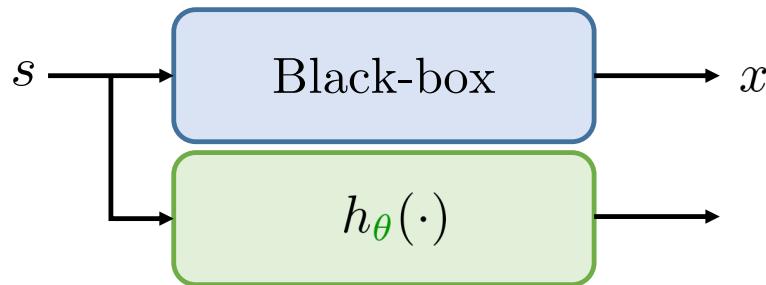
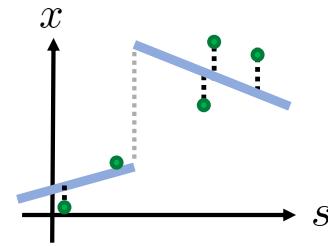
# Supervised Learning



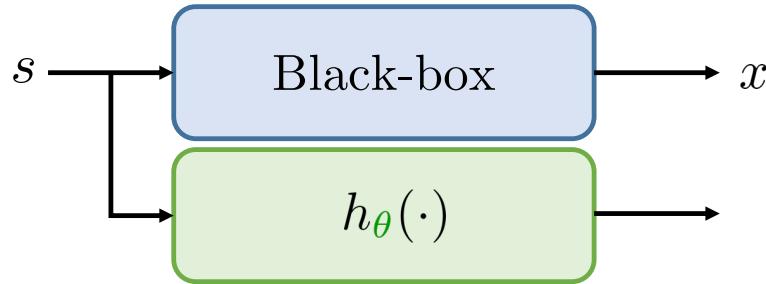
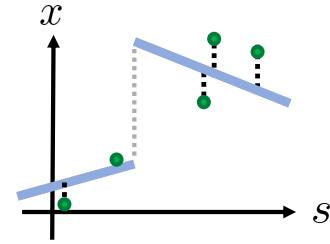
$$\textcircled{2} \quad \ell(x, h_{\theta}(s)) = \|x - h_{\theta}(s)\|^2 \quad h_{\theta}(s) = \theta_1 s + \theta_0 1$$

Training  $\left\{ \begin{array}{l} \text{Data } \{(\hat{s}_i, \hat{x}_i)\}_{i \leq N} \\ \min_{\theta} \sum_{i \leq N} \ell(\hat{x}_i, h_{\theta}(\hat{s}_i)) \end{array} \right.$

# Supervised Learning

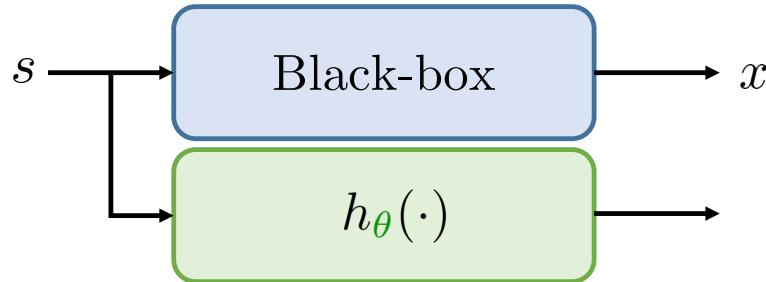
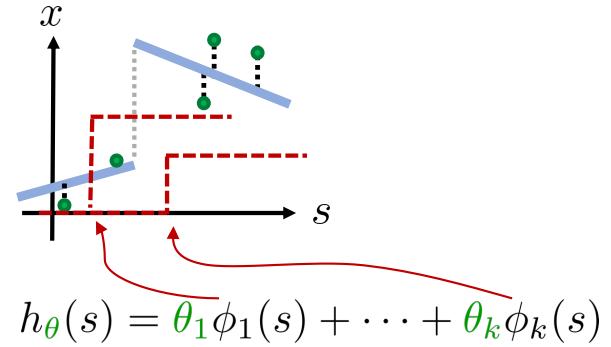


# Supervised Learning

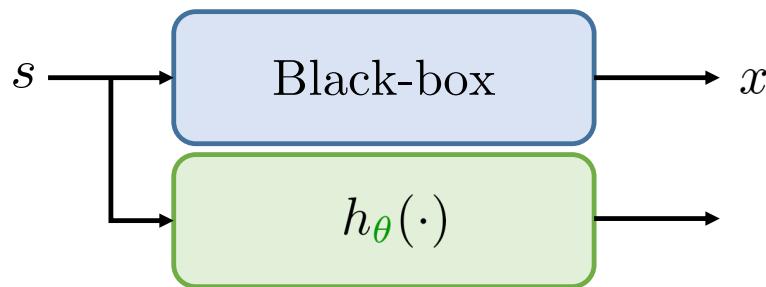
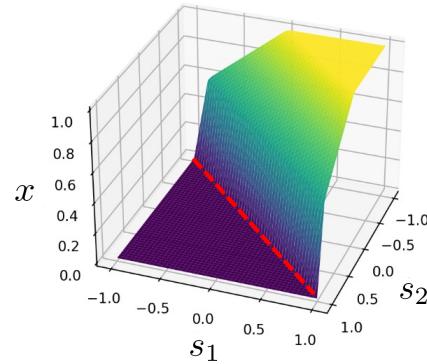


$$h_{\theta}(s) = \theta_1 \phi_1(s) + \cdots + \theta_k \phi_k(s)$$

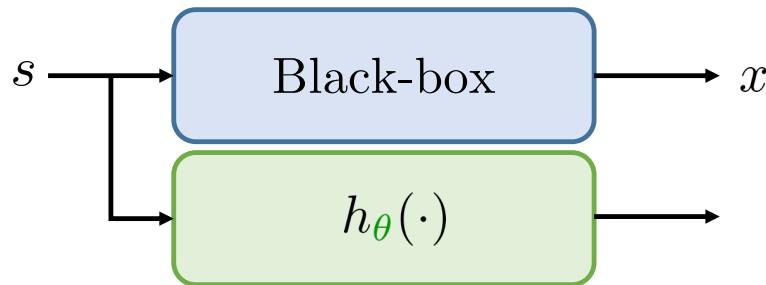
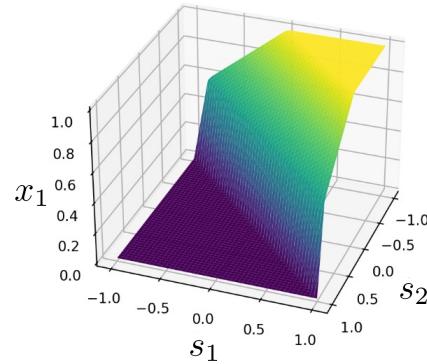
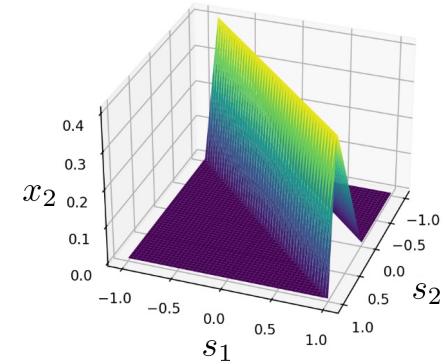
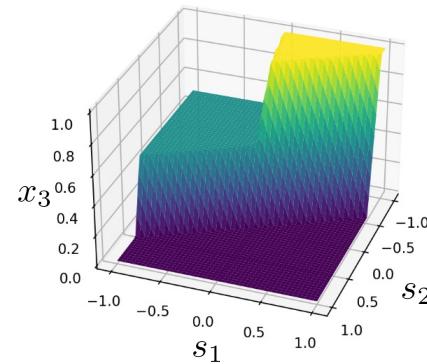
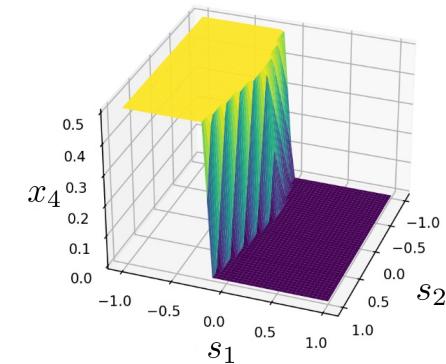
# Supervised Learning



# Supervised Learning



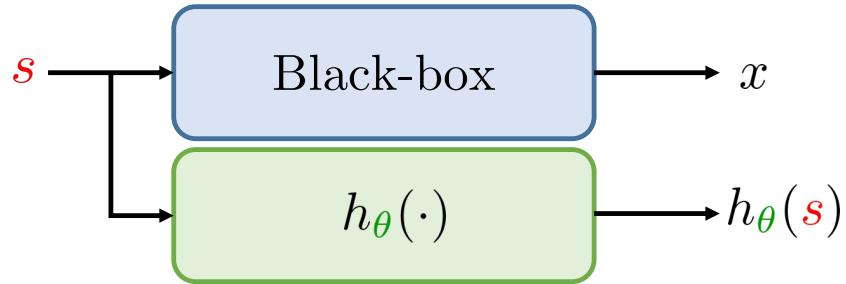
# Supervised Learning



# Outline

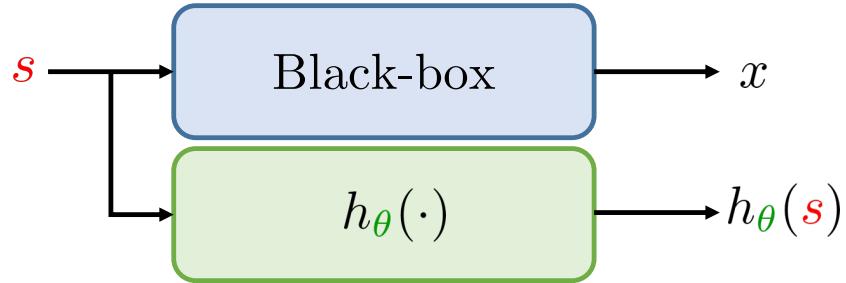
- Supervised learning
- Inverse Optimization
  - A rich model with a convex training loss
- Applications

# Inverse Optimization



$$h_{\theta}(s) = \arg \min_{y \in \mathbb{X}(s)} F_{\theta}(s, y)$$

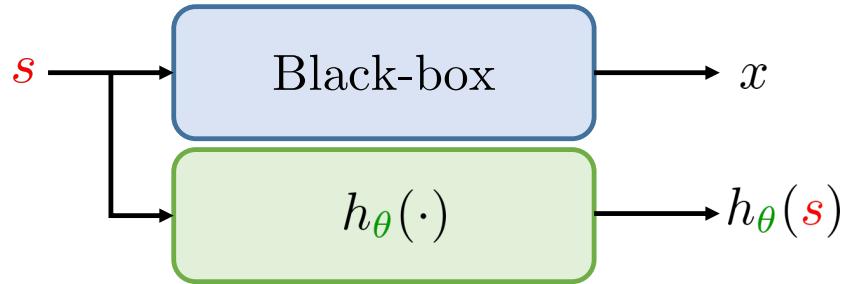
# Inverse Optimization



$$\begin{aligned} h_\theta(s) &= \arg \min_{y \in \mathbb{X}(s)} F_\theta(s, y) \\ &= \arg \min_{y \in \mathbb{X}(s)} y^\top \Theta_2 y + y^\top \Theta_1 s \end{aligned}$$

↓  
↓

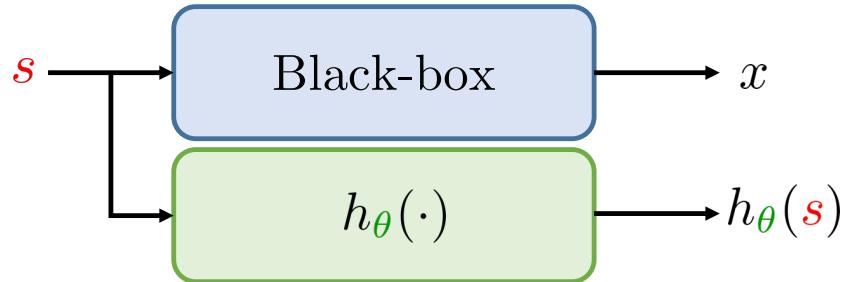
# Inverse Optimization



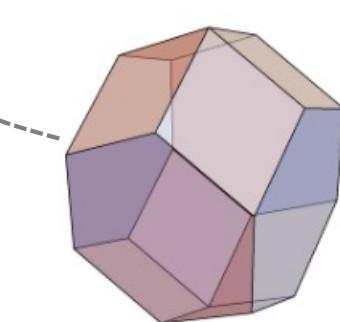
$$\begin{aligned} h_{\theta}(s) &= \arg \min_{y \in \mathbb{X}(s)} F_{\theta}(s, y) \\ &= \arg \min_{y \in \mathbb{X}(s)} y^{\top} \Theta_2 y + y^{\top} \Theta_1 s \end{aligned}$$

output  
information

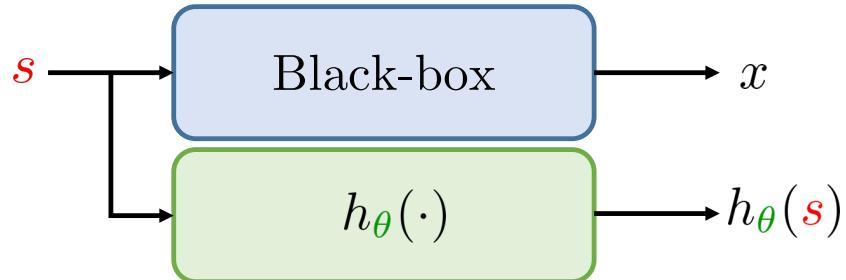
# Inverse Optimization



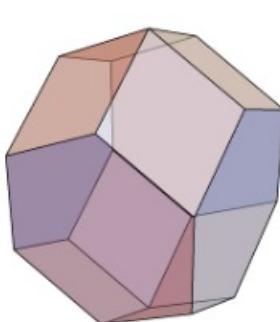
$$h_\theta(s) = \arg \min_{y \in \mathbb{X}(s)} F_\theta(s, y)$$



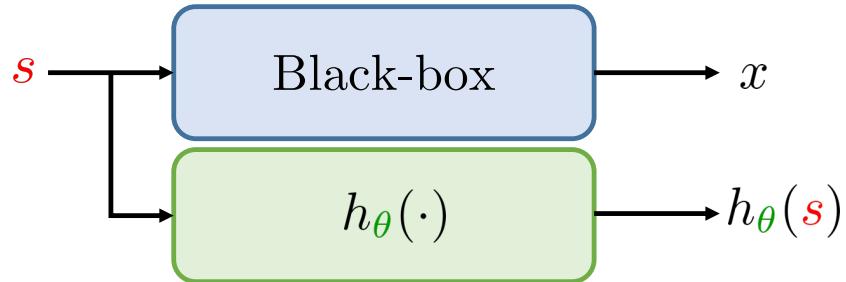
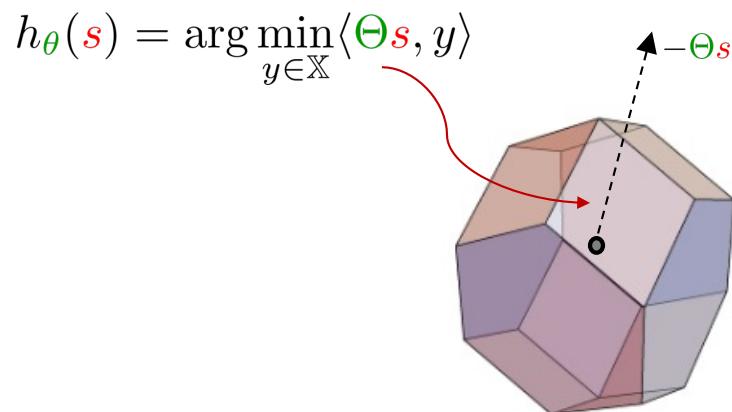
# Inverse Optimization



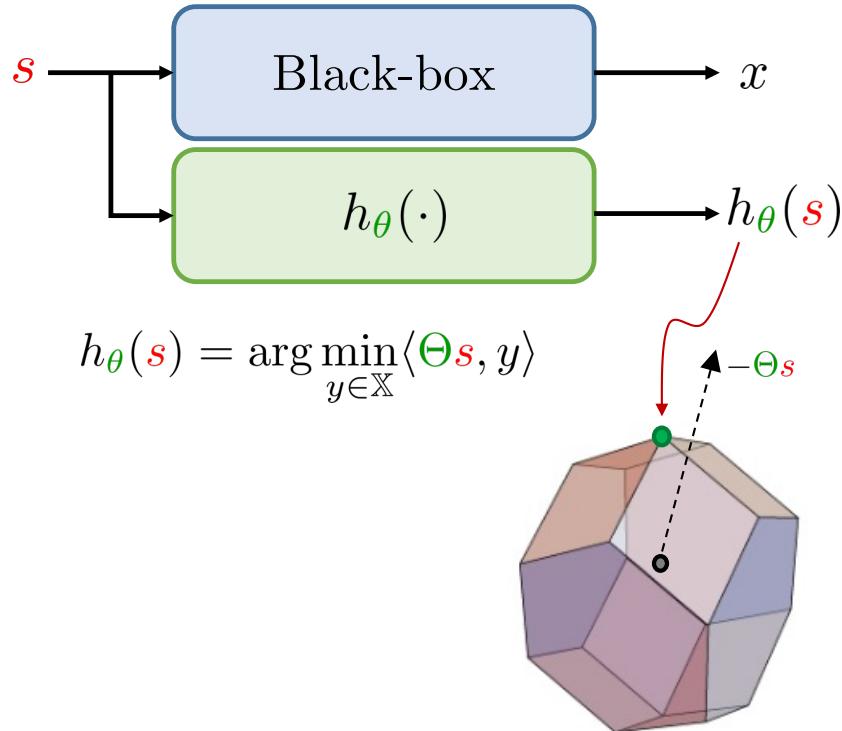
$$h_\theta(s) = \arg \min_{y \in \mathbb{X}} \langle \Theta s, y \rangle$$



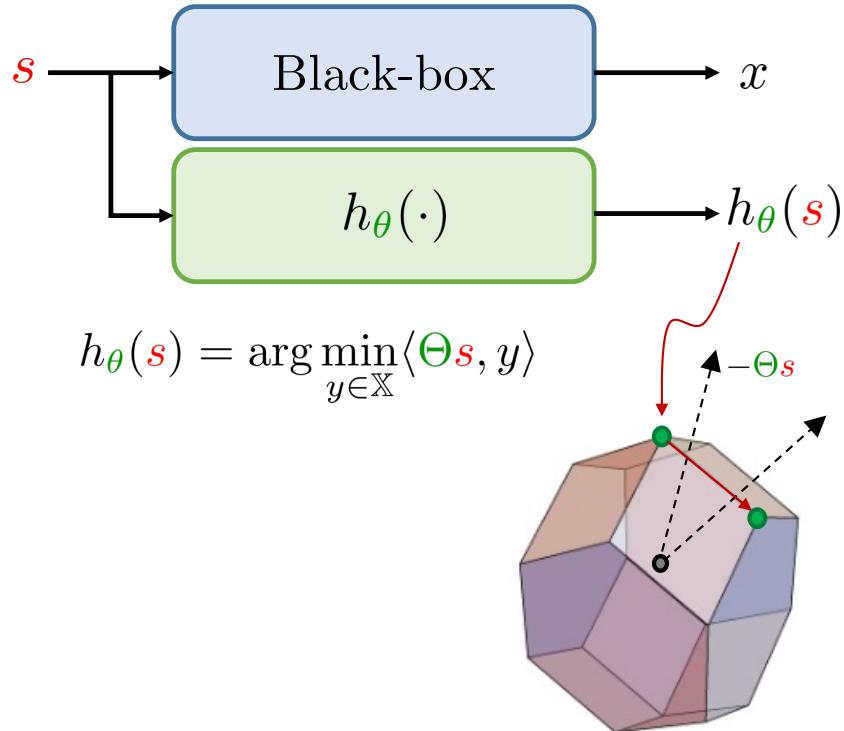
# Inverse Optimization



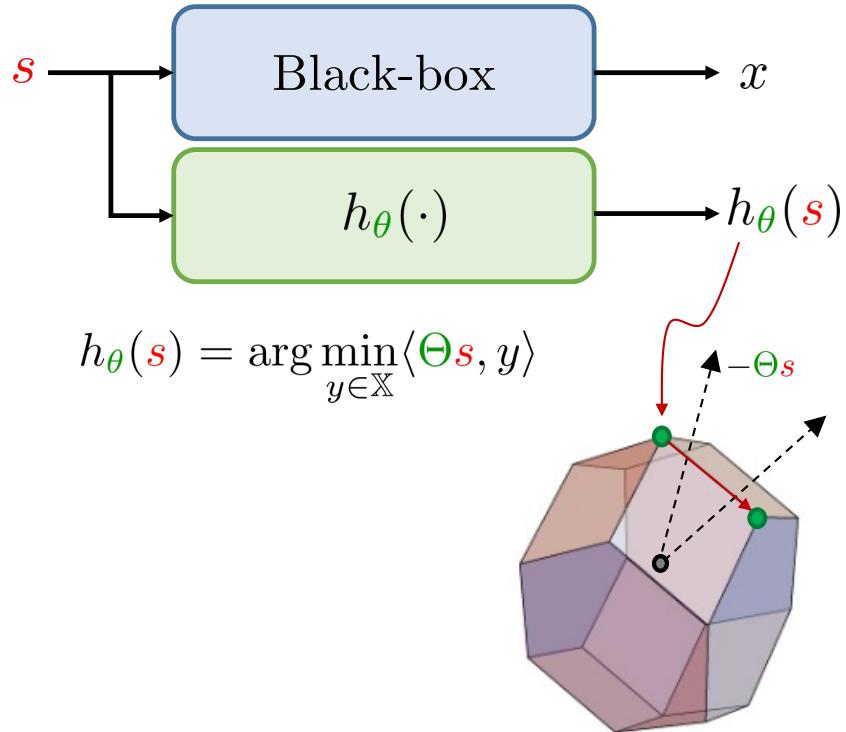
# Inverse Optimization



# Inverse Optimization

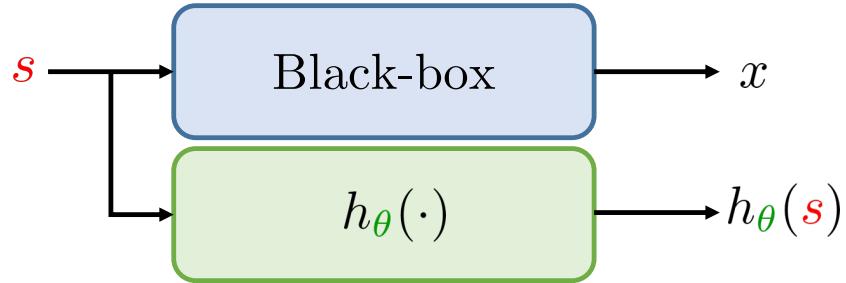


# Inverse Optimization



Polynomial representation  
exponential vertices (discontinuities)

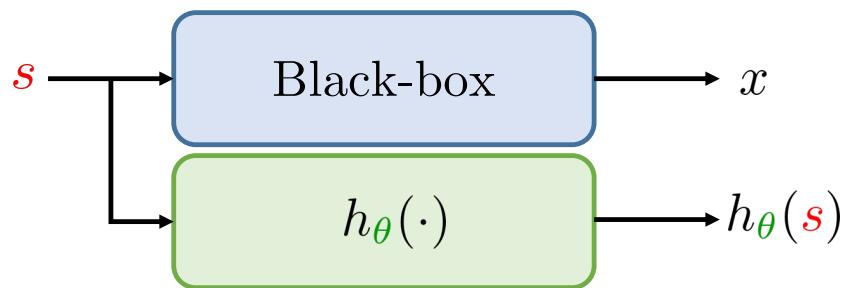
# Inverse Optimization



$$h_\theta(s) = \arg \min_{y \in \mathbb{X}(s)} F_\theta(s, y)$$

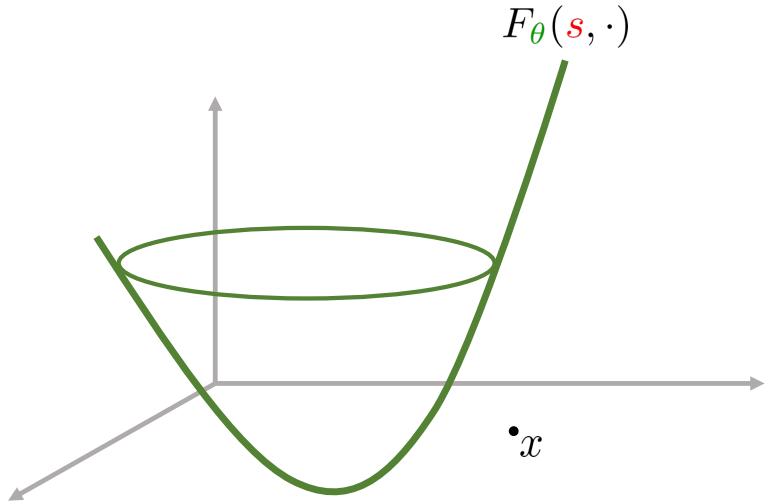
$$\ell^p(x, h_\theta(s)) = \|x - h_\theta(s)\|^2$$

# Inverse Optimization

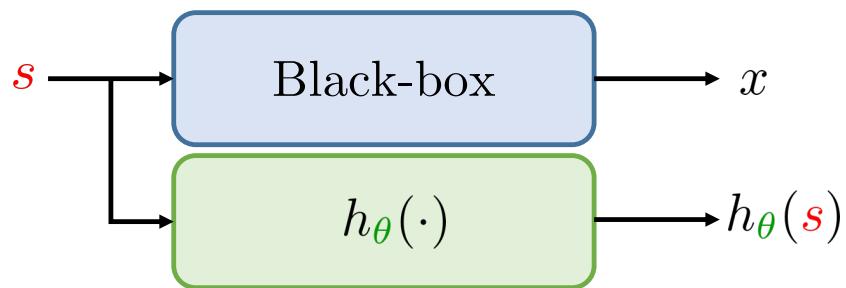


$$h_\theta(s) = \arg \min_{y \in \mathbb{X}(s)} F_\theta(s, y)$$

$$\ell^p(x, h_\theta(s)) = \|x - h_\theta(s)\|^2$$

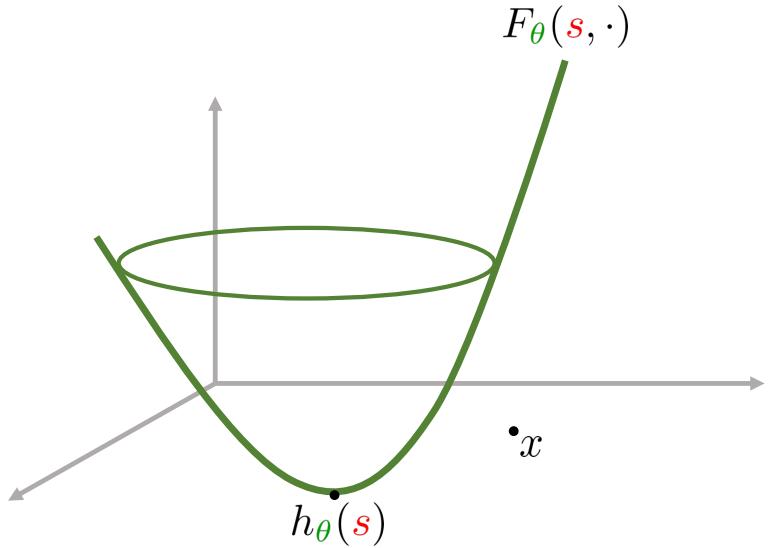


# Inverse Optimization

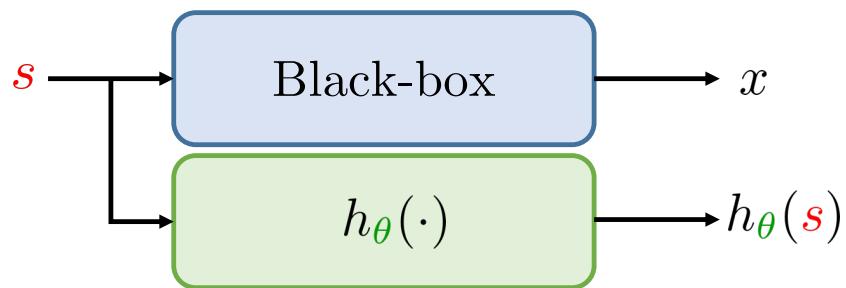


$$h_\theta(s) = \arg \min_{y \in \mathbb{X}(s)} F_\theta(s, y)$$

$$\ell^p(x, h_\theta(s)) = \|x - h_\theta(s)\|^2$$

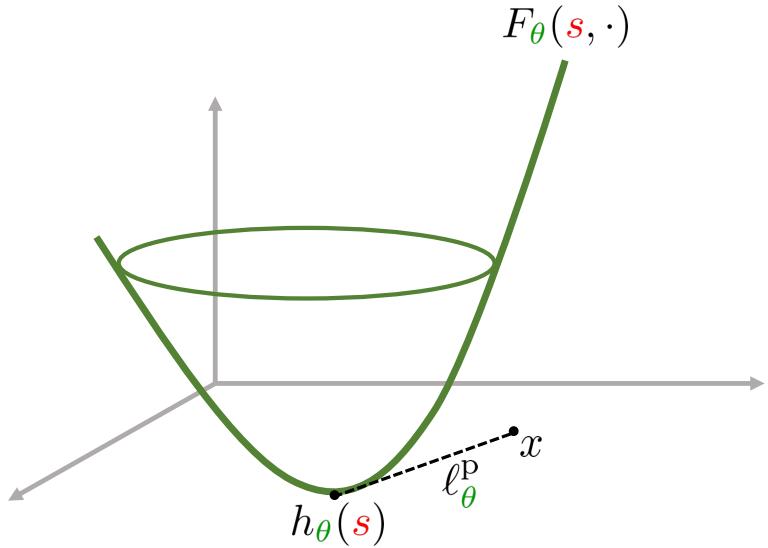


# Inverse Optimization

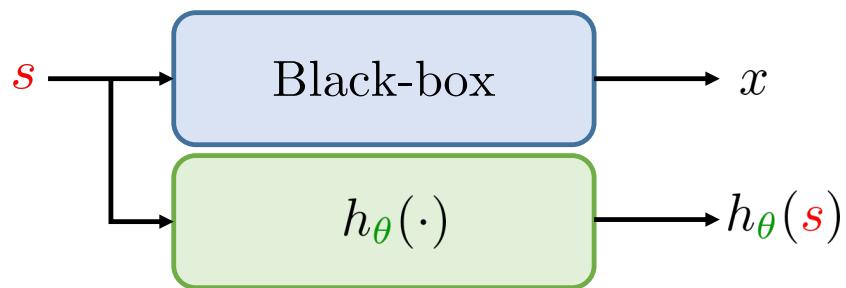


$$h_\theta(s) = \arg \min_{y \in \mathbb{X}(s)} F_\theta(s, y)$$

$$\ell^p(x, h_\theta(s)) = \|x - h_\theta(s)\|^2$$

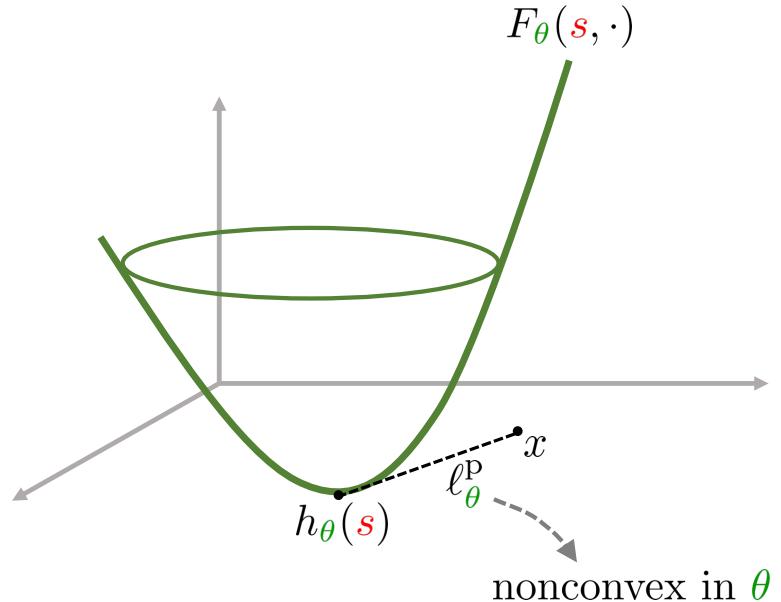


# Inverse Optimization

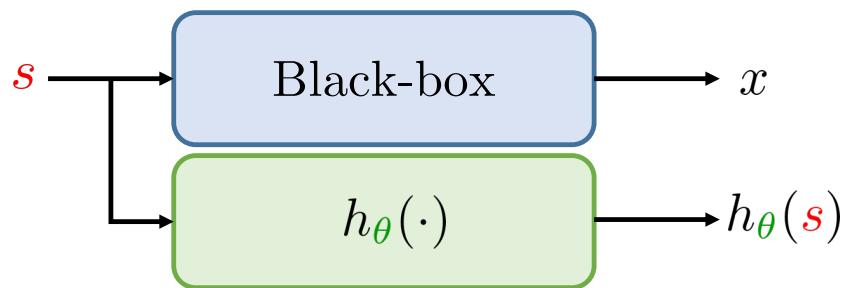


$$h_{\theta}(s) = \arg \min_{y \in \mathbb{X}(s)} F_{\theta}(s, y)$$

$$\ell^p(x, h_{\theta}(s)) = \|x - h_{\theta}(s)\|^2$$

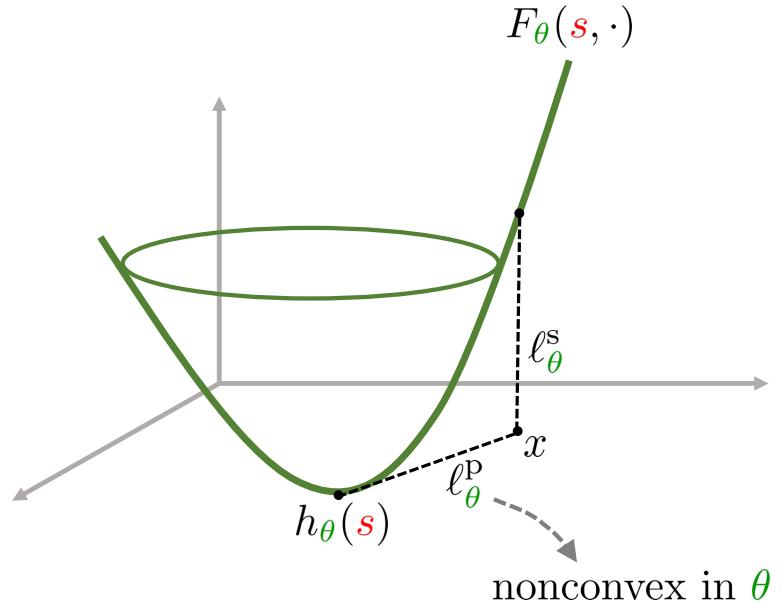


# Inverse Optimization

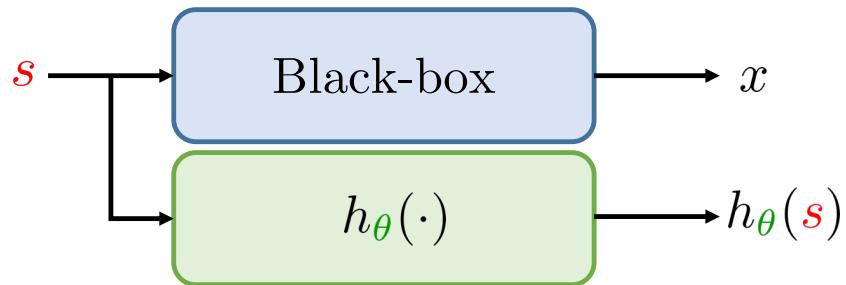


$$h_{\theta}(s) = \arg \min_{y \in \mathbb{X}(s)} F_{\theta}(s, y)$$

$$\ell^p(x, h_{\theta}(s)) = \|x - h_{\theta}(s)\|^2$$



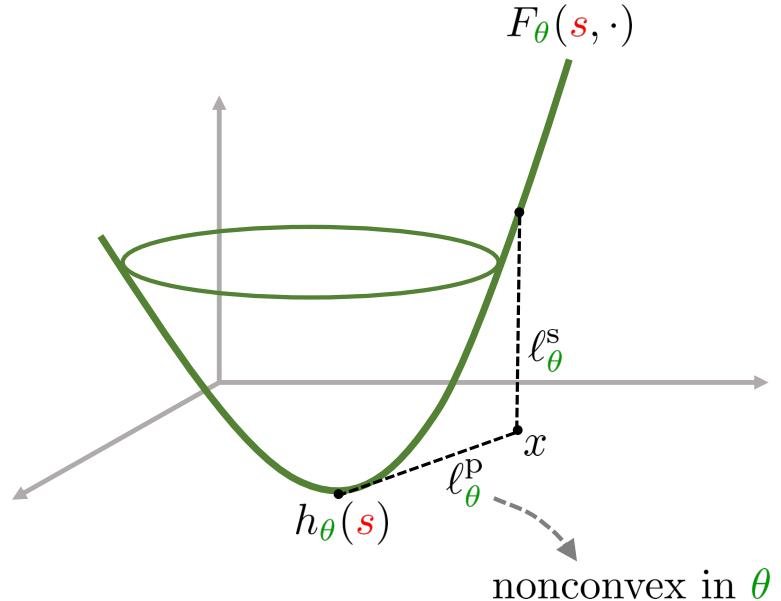
# Inverse Optimization



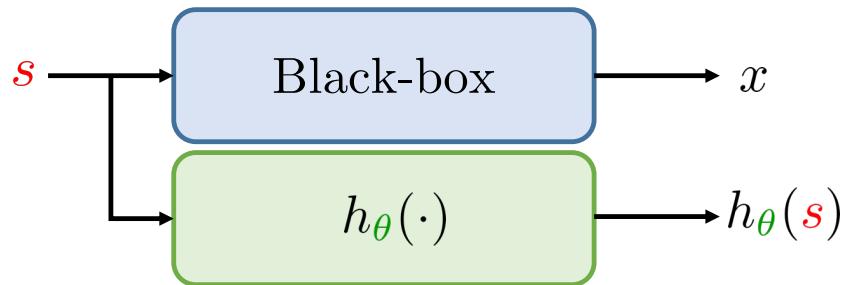
$$h_\theta(s) = \arg \min_{y \in \mathbb{X}(s)} F_\theta(s, y)$$

$$\ell^p(x, h_\theta(s)) = \|x - h_\theta(s)\|^2$$

$$\ell^s(x, h_\theta(s)) = F_\theta(s, x) - F_\theta(s, h_\theta(s))$$



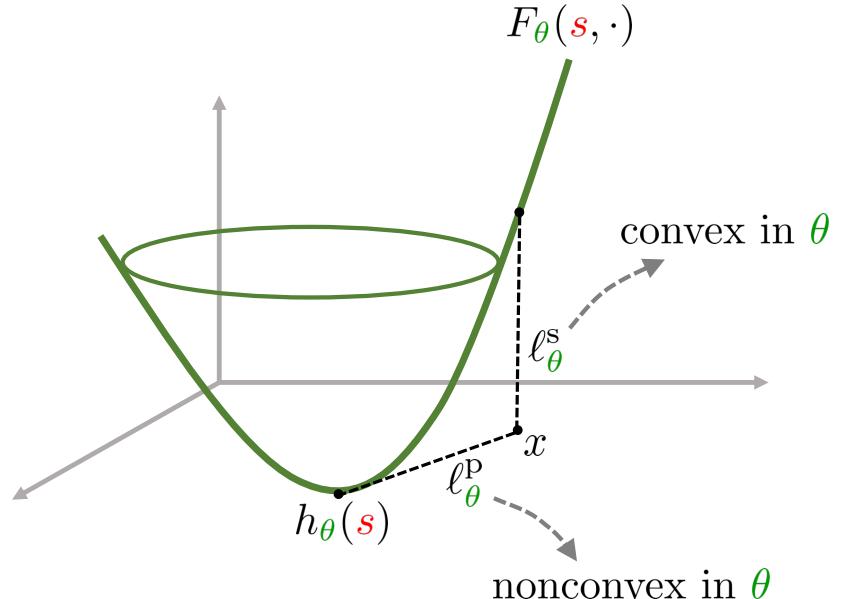
# Inverse Optimization



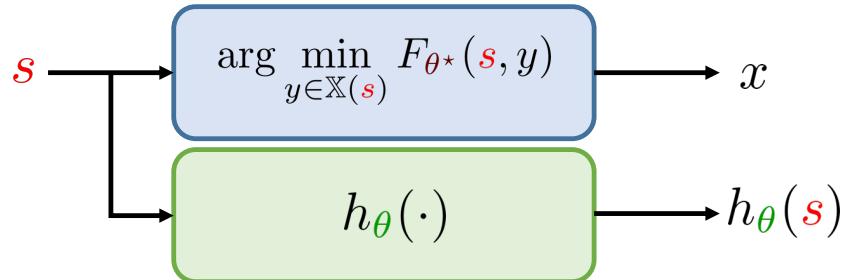
$$h_{\theta}(s) = \arg \min_{y \in \mathbb{X}(s)} F_{\theta}(s, y)$$

$$\ell^p(x, h_{\theta}(s)) = \|x - h_{\theta}(s)\|^2$$

$$\ell^s(x, h_{\theta}(s)) = F_{\theta}(s, x) - F_{\theta}(s, h_{\theta}(s))$$



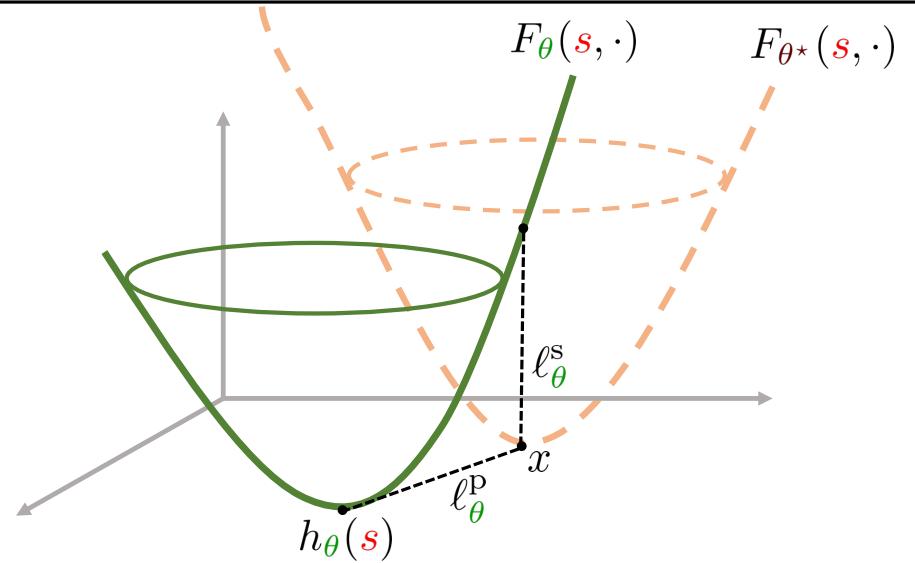
# Inverse Optimization



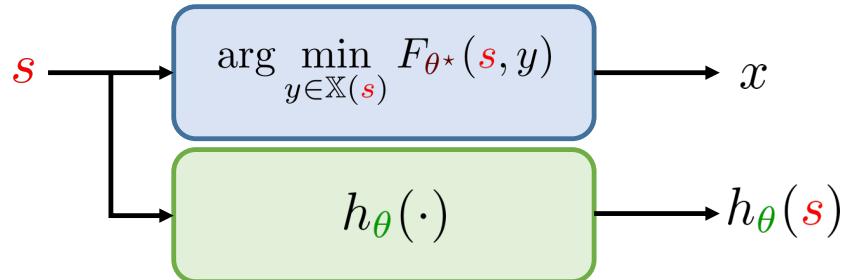
$$h_{\theta}(s) = \arg \min_{y \in \mathbb{X}(s)} F_{\theta}(s, y)$$

$$\ell^p(x, h_{\theta}(s)) = \|x - h_{\theta}(s)\|^2$$

$$\ell^s(x, h_{\theta}(s)) = F_{\theta}(s, x) - F_{\theta}(s, h_{\theta}(s))$$



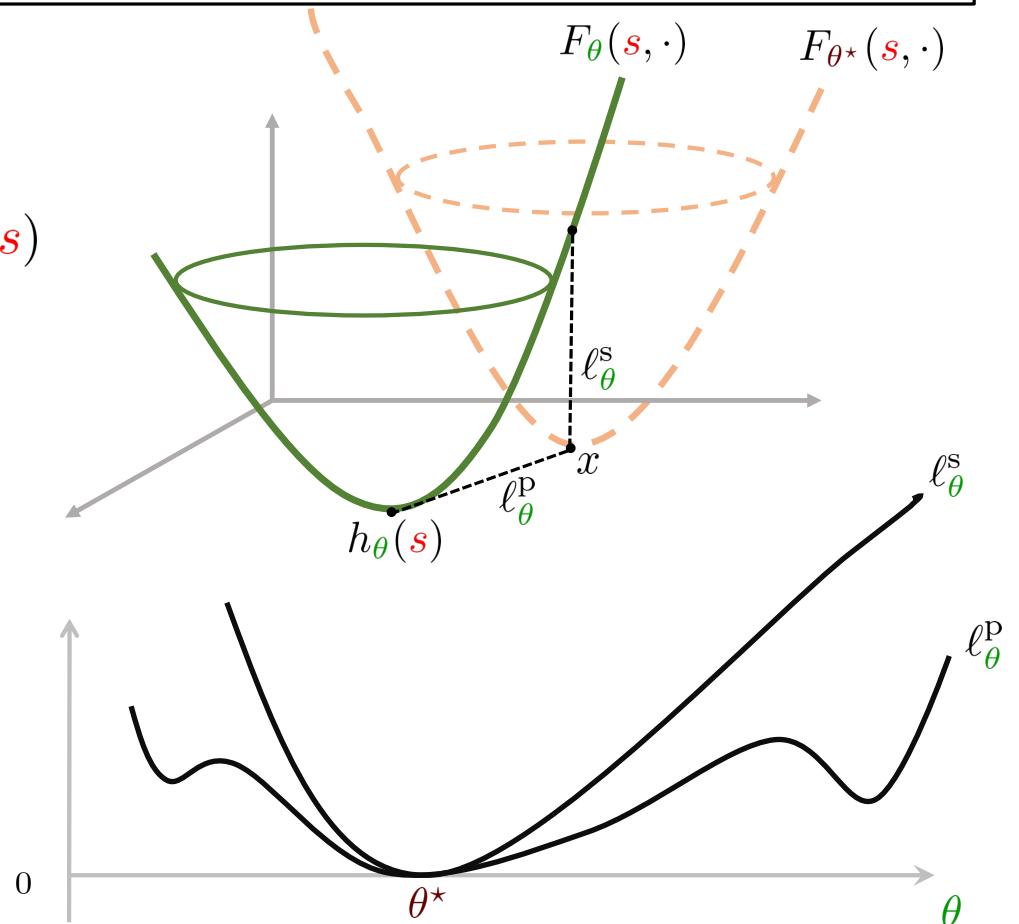
# Inverse Optimization



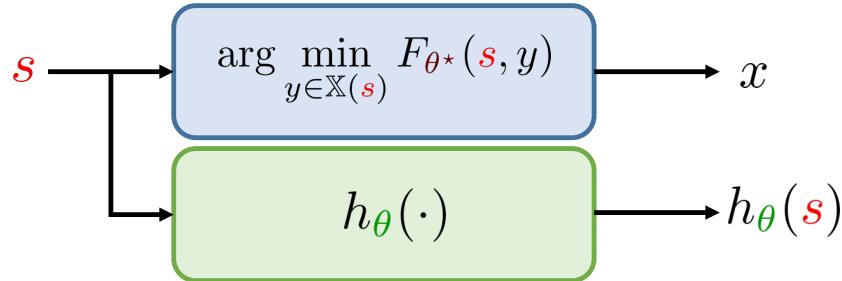
$$h_{\theta}(s) = \arg \min_{y \in \mathbb{X}(s)} F_{\theta}(s, y)$$

$$\ell^p(x, h_{\theta}(s)) = \|x - h_{\theta}(s)\|^2$$

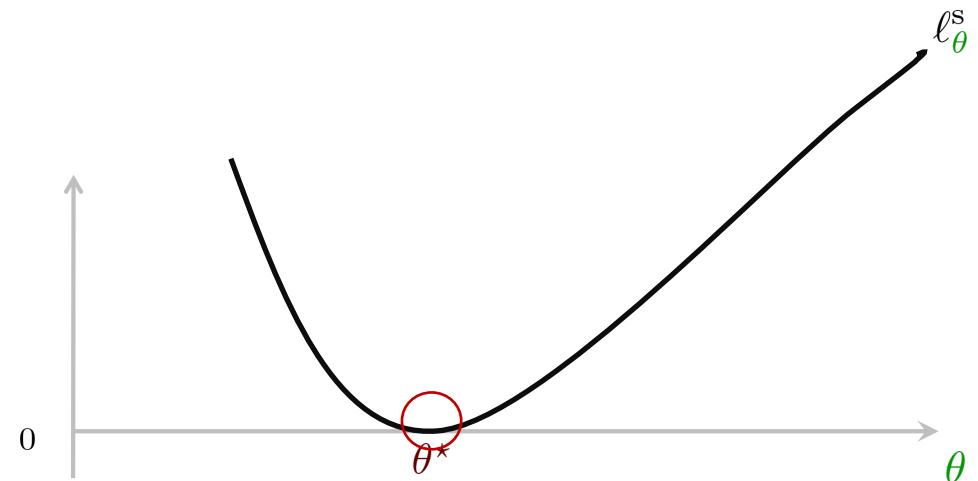
$$\ell^s(x, h_{\theta}(s)) = F_{\theta}(s, x) - F_{\theta}(s, h_{\theta}(s))$$



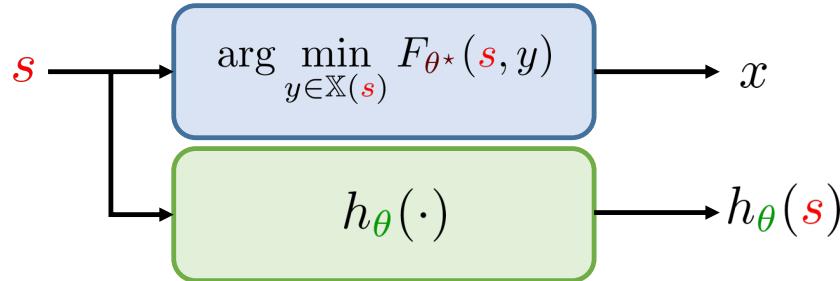
# Inverse Optimization



$$h_{\theta}(s) = \arg \min_{y \in \mathbb{X}(s)} F_{\theta}(s, y)$$

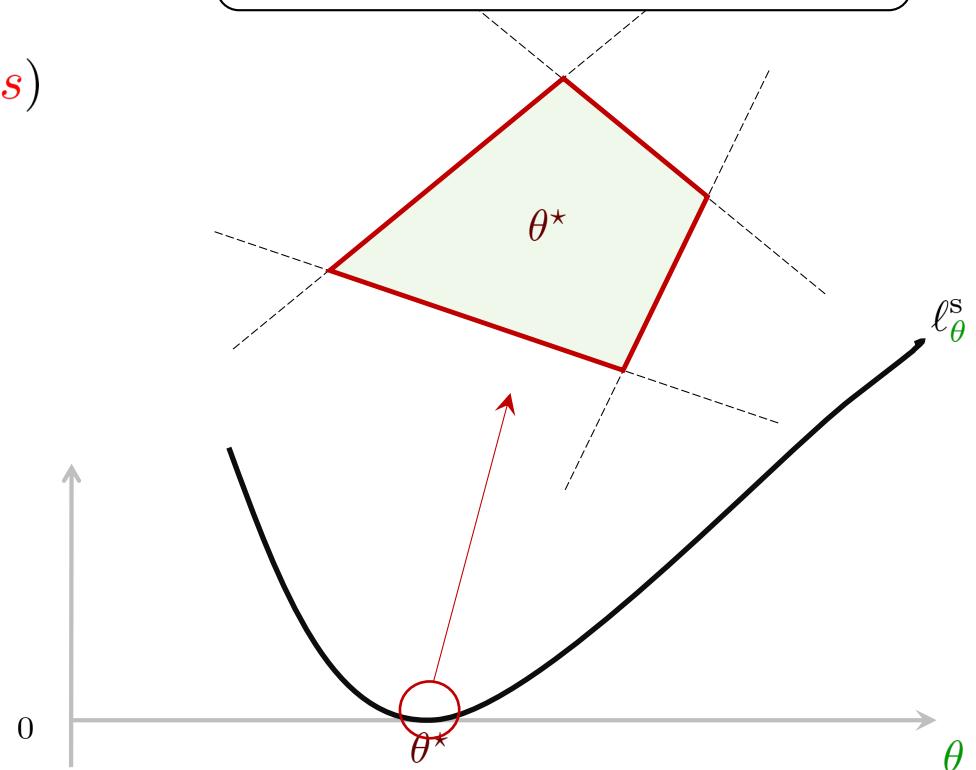


# Inverse Optimization

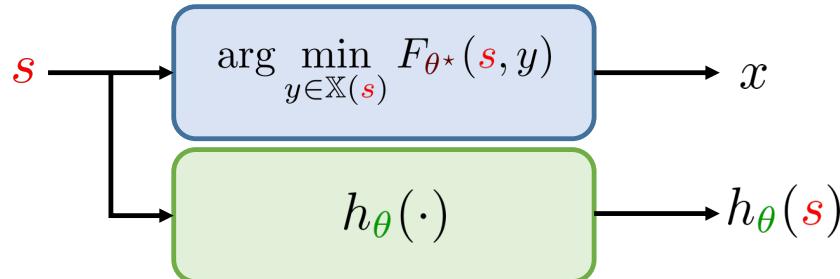


$$h_{\theta}(s) = \arg \min_{y \in \mathbb{X}(s)} F_{\theta}(s, y)$$

Circumcenter, Incenter, Robustness, Algorithms  
(Besbes et al. OR 2023, Zattoni et al., OR 2024)



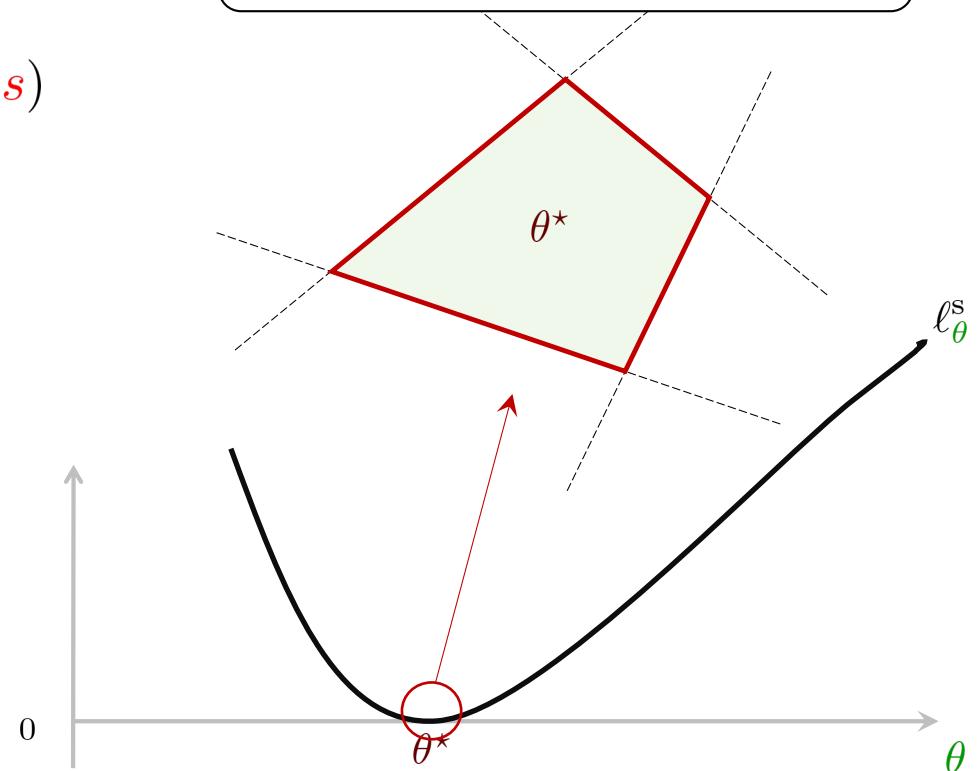
# Inverse Optimization



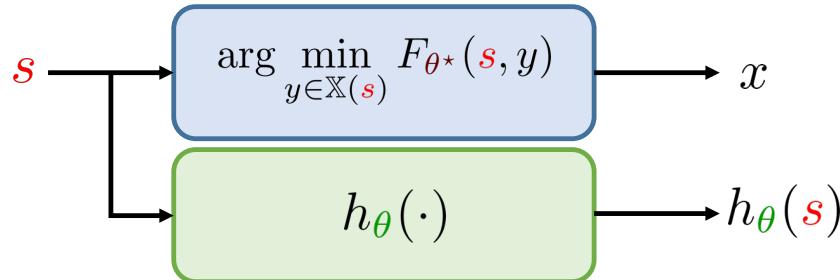
Circumcenter, Incenter, Robustness, Algorithms  
(Besbes et al. OR 2023, Zattoni et al., OR 2024)

$$h_{\phi}(s) = \arg \min_{y \in \mathbb{X}(s)} \langle \phi(s), y \rangle$$

Non-parametric learning  
(Long et al., NeurIPS 2024)



# Inverse Optimization



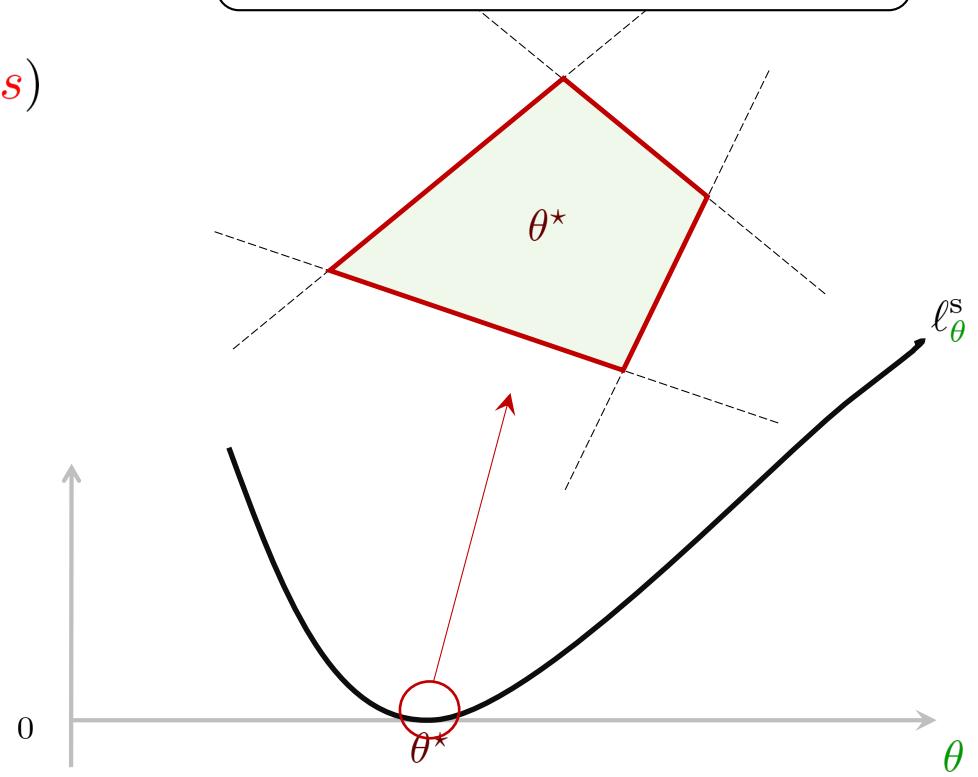
Circumcenter, Incenter, Robustness, Algorithms  
(Besbes et al. OR 2023, Zattoni et al., OR 2024)

$$h_{\phi}(s) = \arg \min_{y \in \mathbb{X}(s)} \langle \phi(s), y \rangle$$

Non-parametric learning  
(Long et al., NeurIPS 2024)

$$h_{\theta}(s) = \arg \min_{y \in \mathbb{X}_{\theta}(s)} \langle \phi(s), y \rangle$$

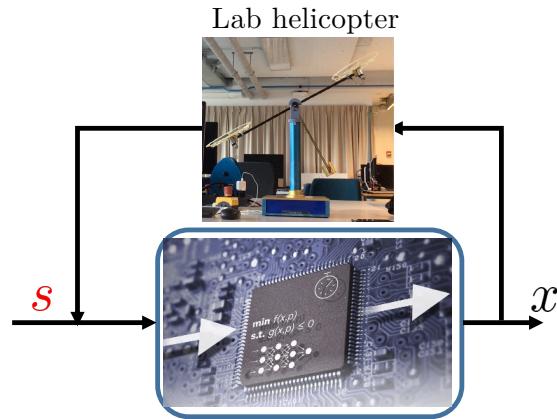
Constraints learning  
(Ke et al., ICML 2025)



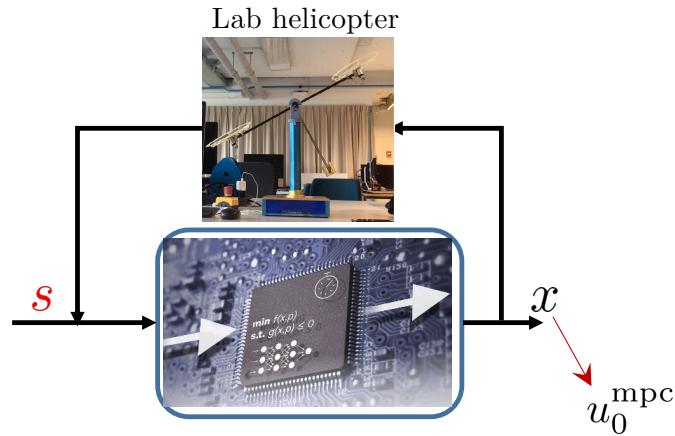
# Outline

- Data-driven decision-making
- Inverse optimization
- Applications
  - A competition for Neural Networks !?

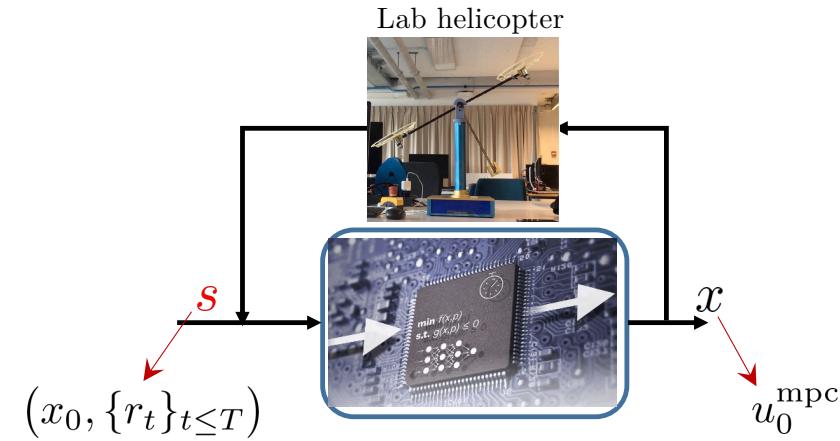
# Model Predictive Control (MPC)



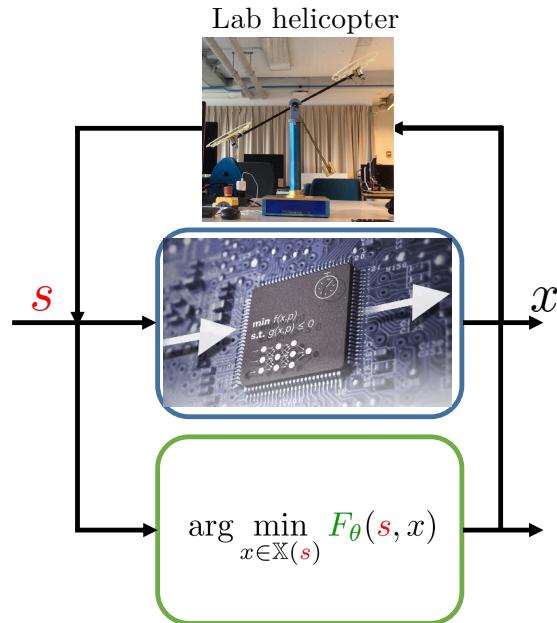
# Model Predictive Control (MPC)



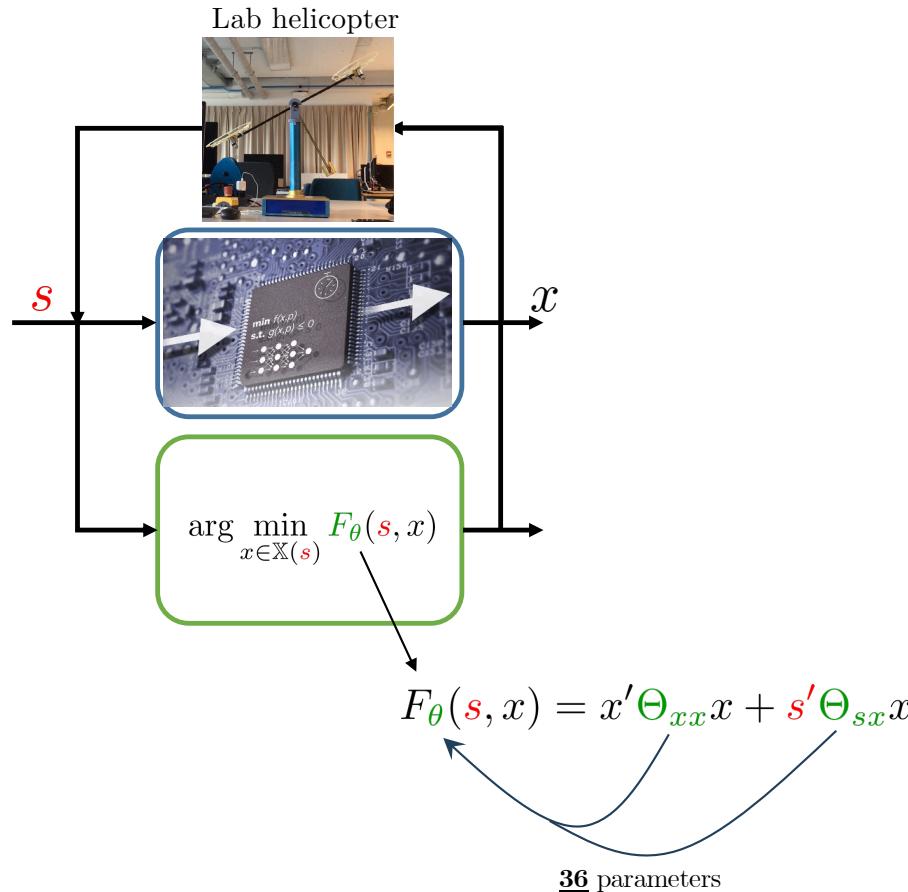
# Model Predictive Control (MPC)



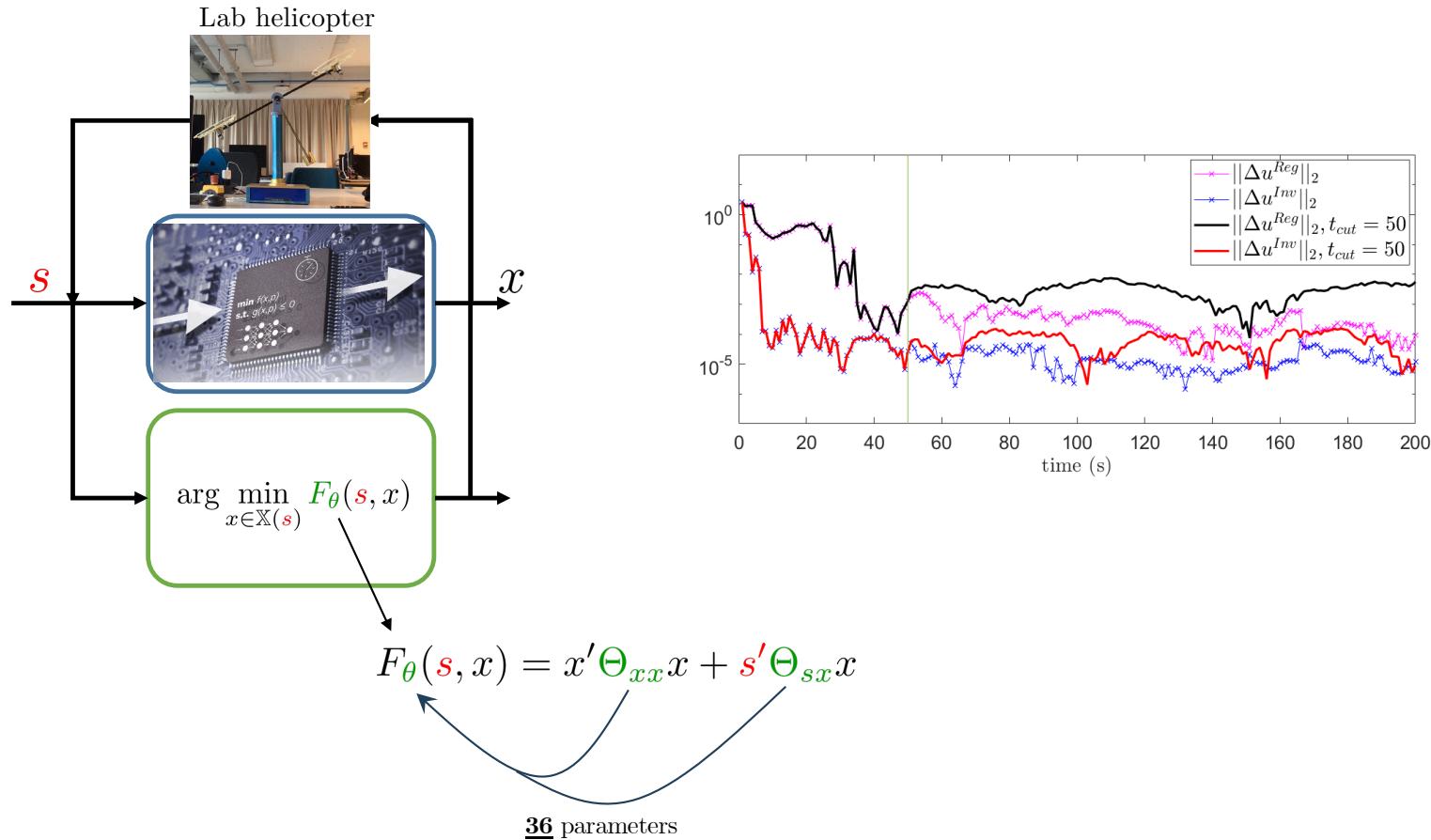
# Model Predictive Control (MPC)



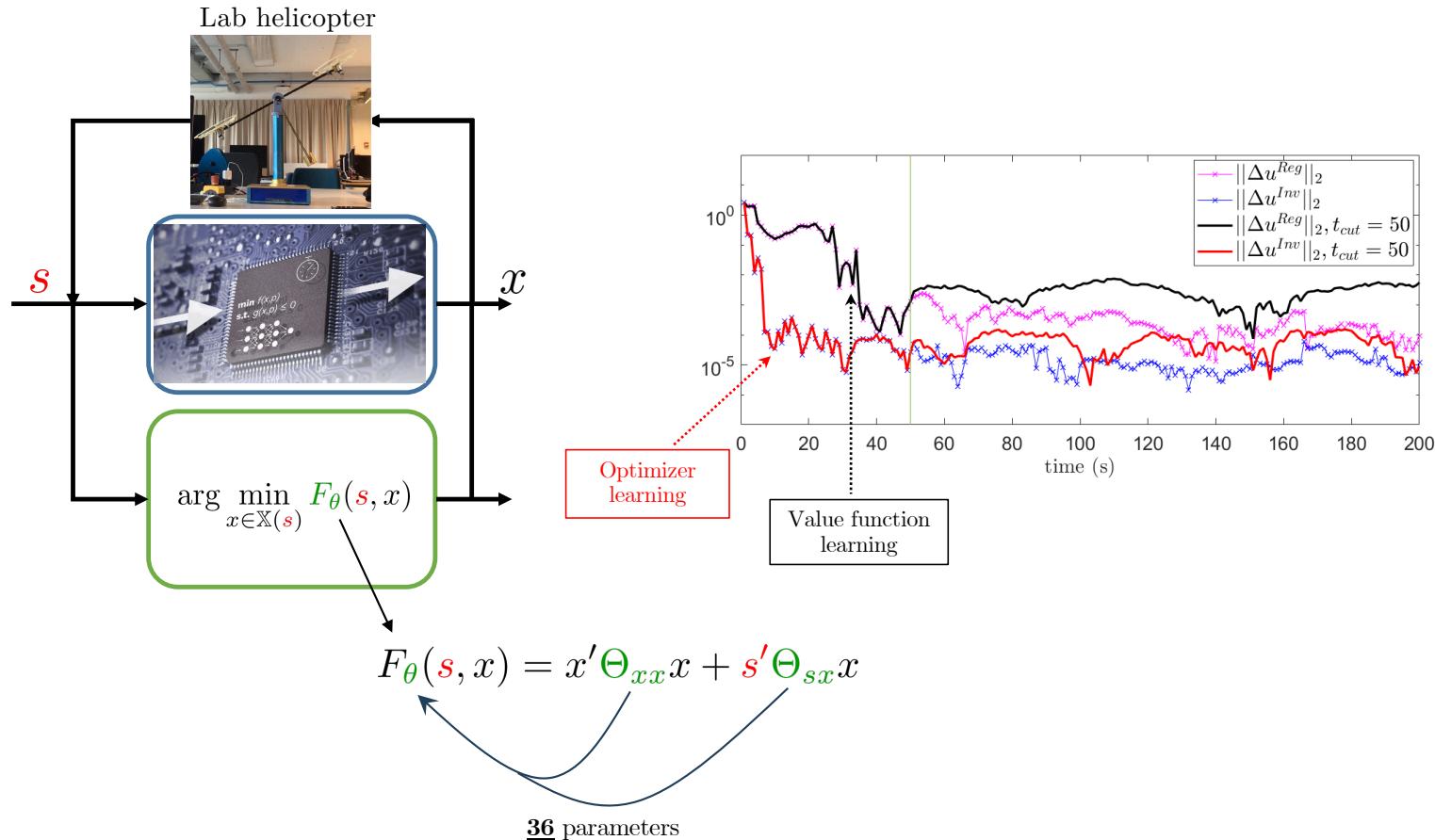
# Model Predictive Control (MPC)



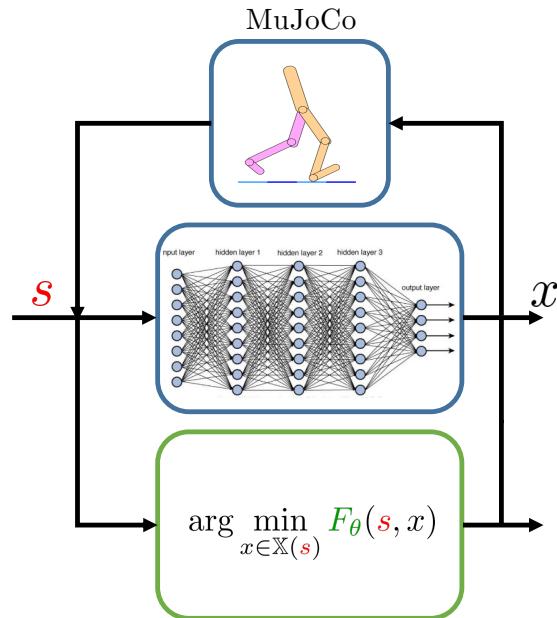
# Model Predictive Control (MPC)



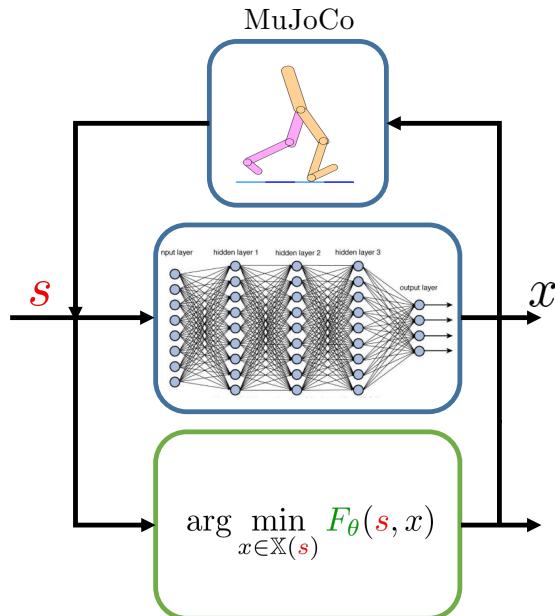
# Model Predictive Control (MPC)



# MuJoCo Environments



# MuJoCo Environments



|                      | # Parameters | Training dataset | Scores |
|----------------------|--------------|------------------|--------|
| Neural Network       | 2,489,949    | 1M               | 82.9   |
| Inverse Optimization | 840          | 5k               | 70.6   |



# Last Mile Routing Challenge

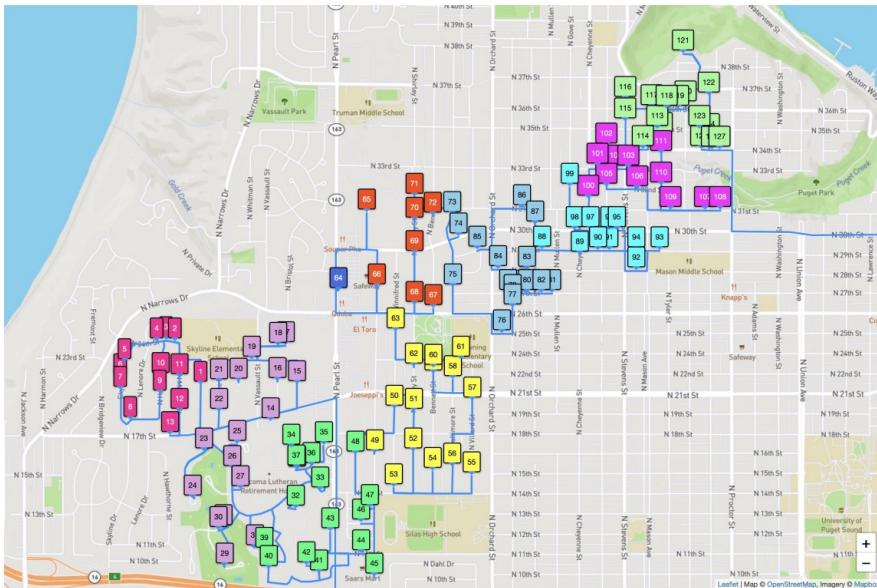


# Last Mile Routing Challenge



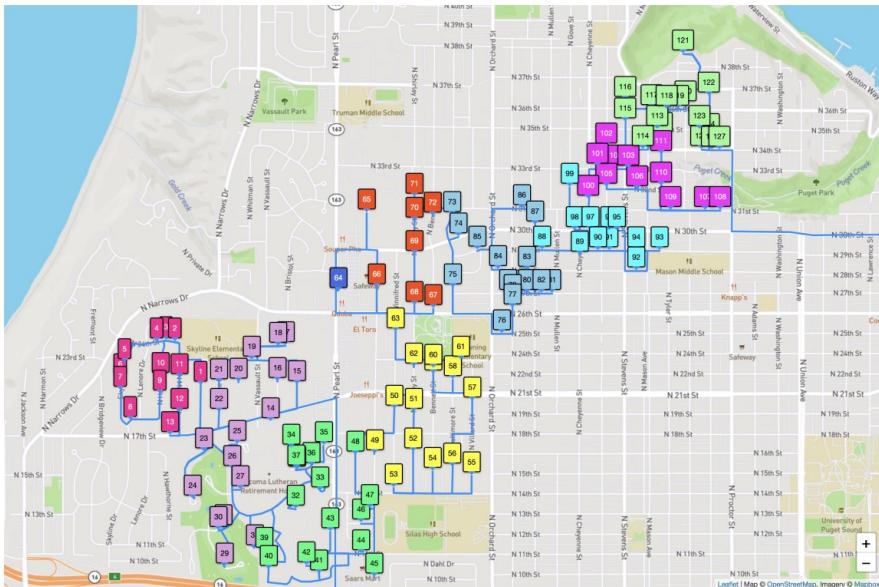
- “Tacit knowledge often contradicts optimized route plans”

# Last Mile Routing Challenge

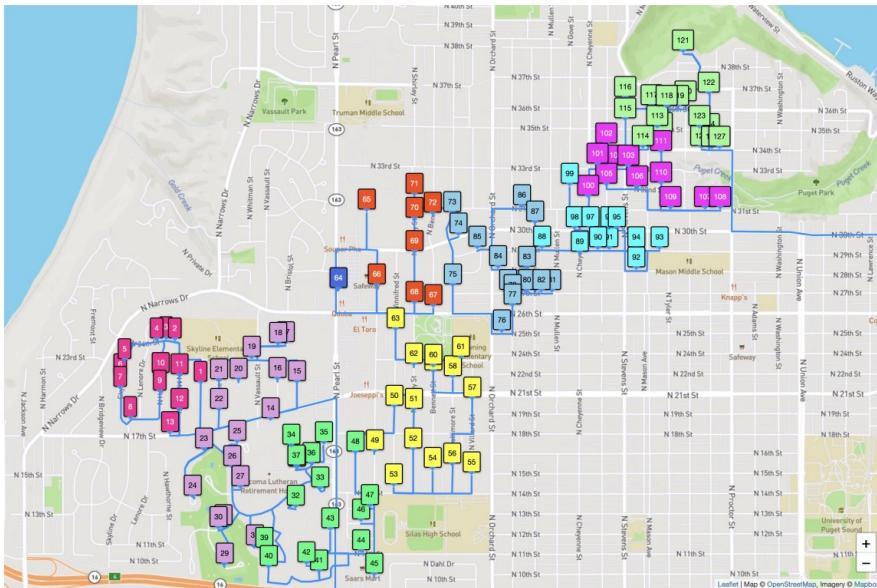


- “Tacit knowledge often contradicts optimized route plans”
- Dataset with **6112** real-world routes from expert human drivers

# Last Mile Routing Challenge

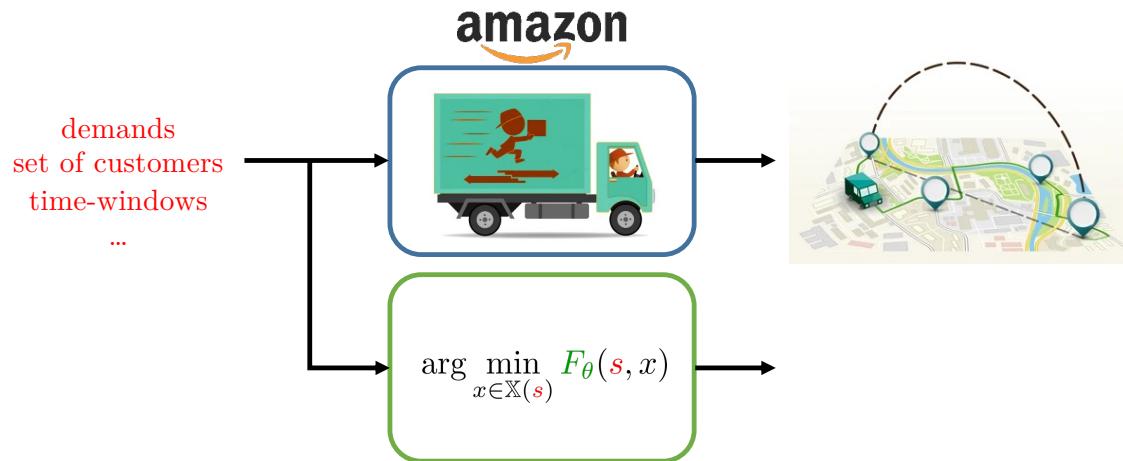


# Last Mile Routing Challenge



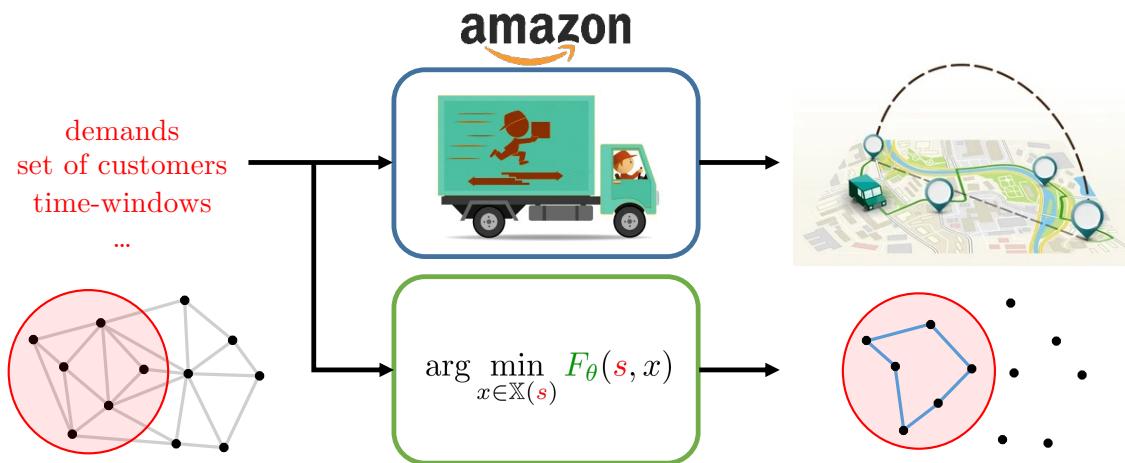
- “Tacit knowledge often contradicts optimized route plans”
- Dataset with **6112** real-world routes from expert human drivers
- **Goal:** learn how to route like expert human drivers.
- **\$175,000** in prizes!

# Last Mile Routing Challenge



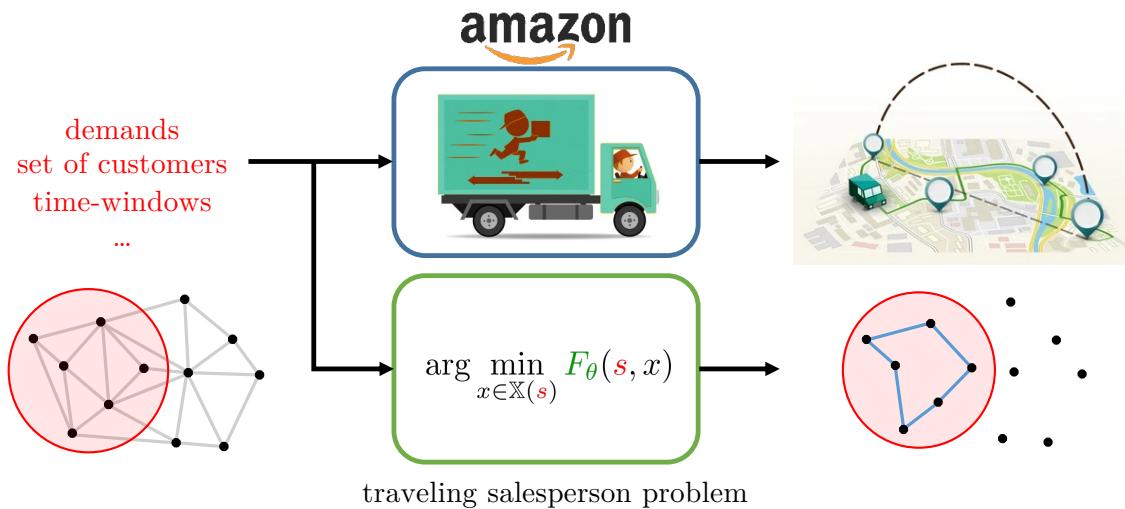
- “Tacit knowledge often contradicts optimized route plans”
- Dataset with **6112** real-world routes from expert human drivers
- **Goal:** learn how to route like expert human drivers.
- **\$175,000** in prizes!

# Last Mile Routing Challenge



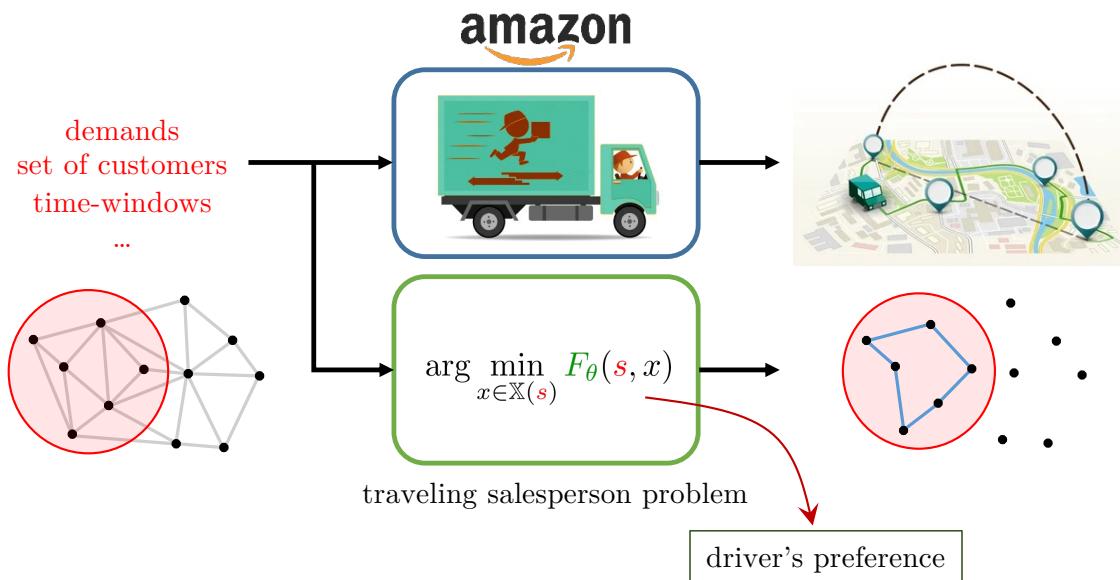
- “Tacit knowledge often contradicts optimized route plans”
- Dataset with **6112** real-world routes from expert human drivers
- **Goal:** learn how to route like expert human drivers.
- **\$175,000** in prizes!

# Last Mile Routing Challenge



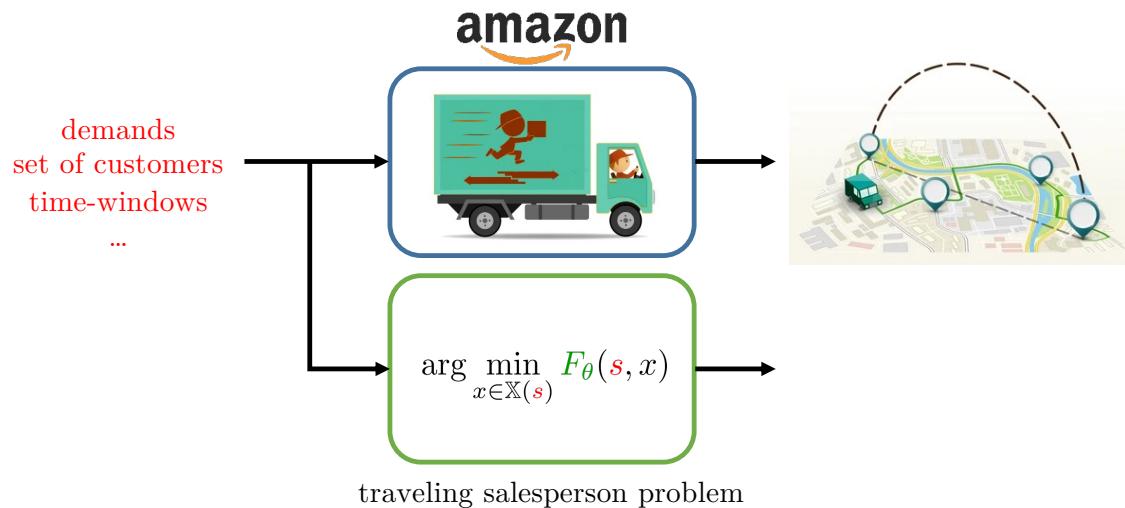
- “Tacit knowledge often contradicts optimized route plans”
- Dataset with **6112** real-world routes from expert human drivers
- **Goal:** learn how to route like expert human drivers.
- **\$175,000** in prizes!

# Last Mile Routing Challenge

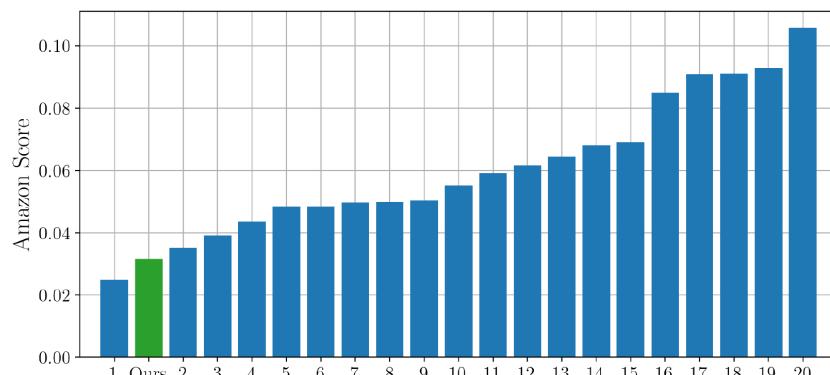


- “Tacit knowledge often contradicts optimized route plans”
- Dataset with **6112** real-world routes from expert human drivers
- **Goal:** learn how to route like expert human drivers.
- **\$175,000** in prizes!

# Last Mile Routing Challenge



- “Tacit knowledge often contradicts optimized route plans”
- Dataset with **6112** real-world routes from expert human drivers
- **Goal:** learn how to route like expert human drivers.
- **\$175,000 in prizes!**



# References

(available at <https://mohajerinesfahani.github.io/>)

Sub-optimality  
Loss & DRO

- PME, Shafieezadeh-Abadeh, Hanusanto, and Kuhn, “Data-driven Inverse Optimization with Imperfect Information”, *Mathematical Programming (MP)*, 2018

Incenter,  
robustness,  
algorithms

- Zattoni Scroccaro, Atasoy, PME, “Learning in Inverse Optimization: Incenter Cost, Augmented Suboptimality Loss, and Algorithms”, *Operations Research (OR)*, 2024

Routing  
problems

- Zattoni Scroccaro, van Beek, PME, Atasoy, “Inverse Optimization for Routing Problems”, *Transportation Science (TS)*, 2024

Nonparametric  
approach

- Long, Ok, Zattoni Scroccaro, PME, “Scalable Kernel Inverse Optimization”, *Conference on Neural Information Processing Systems (NeurIPS)*, 2024

Constraints  
learning

- Ke, PME, Georghiou, “Inverse Optimization via Learning Feasible Regions”, *International Conference on Machine Learning (ICML)*, 2025

Code

- Zattoni Scroccaro, “InvOpt: Inverse Optimization with Python”,  
<https://github.com/pedroszattoni/invopt>, 2024