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Previously: 

Research Approach: 

Control theory guarantees combined 

with ML improvements to create 

safe + performant robots.

Control

ML Robotics



It’s an exciting time 

to be a roboticist!



There’s still lots to be done!

Real-world safety is hard: 
• Learned controllers

• Complex environments

• Noisy sensors

• Multiagent scenarios

• Sim-to-real gaps

• The list is endless …
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& Future Work
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My work 

Generate theoretical robust safety guarantees that are too conservative, 

That provides us with understanding

Use that understanding as tunable knobs to create interpretable interfaces for ML/AI

A common sentiment in robotics vs the optimization community: 

- Fast and good is better than slow and perfect

- The utility of a theorem is often in the ideas it elucidates and knobs it creates, not in the exact guarantee itself

- Perfect is the enemy of good 
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Several methods have emerged 

Common methods: 
○ Hamilton Jacobi methods[1]

○ State constraints in model predictive control (MPC)[2]

○ Control Barrier Functions[3]

Safety as forward-invariance

System Model:

  

If 

then    is a forward-invariant set and safe.

Definition: Set Invariance and Safety

[1] Bansal, et al. Hamilton-Jacobi reachability: A brief overview and recent advances. CDC, 2017.

[2] Borrelli, et al. Predictive control for linear and hybrid systems. Cambridge University Press, 2017. 

[3] Ames, et al. Control barrier function based QPs for safety critical systems. TAC, 2017.



Defining Safety: Control Barrier Functions

[3] Ames, et al. Control barrier function based quadratic programs for safety critical systems. TAC, 2017.

Continuous-Time Systems

User-Defined Safe Set: 

Theorem: CBF Safety [3]

safety.

Growing popularity: 
• 4710 publications since introduced in 2014

• Several conference sessions and workshops



Defining Safety: CBF Safety Filter

User command:

System state:

Safety Filter:

Safety definition:

System model:

CBFs are often used in safety filters:

[4] Gurriet, et al. Towards a Framework for Realizable Safety Critical Control through Active Set Invariance. ICCPS,  2018.
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Naïve Application

Theorem: CBF-based Safety 



Learning Error

Perfect controller 

imitation

Infeasible Safety

The CBF inequality is 

feasible:

Should we throw away our theory? 

Model Error

The true dynamics are 

known:

Measurement Error

The true state is 

known:

No! But we should reexamine our assumptions:
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Learning Error

Perfect controller 

imitation

Infeasible Safety

The CBF inequality is 

feasible:

Real-World Safety

Model Error

The true dynamics are 

known:

Measurement Error

The true state is 

known:

Key assumptions, one at a time:



Safety with Bounded Dynamics Uncertainty

Adding bounded disturbances,  

Expanded Worst-Case Safe Set:

[9] Kolathaya, et al. Input-to-State Safety with Control Barrier Functions. CSL, 2018.  

 renders       forward invariant for                               

Theorem: Input-to-State Safe CBF [9]



Learn dynamics residuals           via online sampling

Keep robust constraint feasible:

Learning Dynamics Online
• Using a Gaussian-Process method we can learn 

the dynamics well enough and fast enough to 
enforce safety

• Crazy sampling scheme, requires that the CBF 
hold for the true dynamics that we don’t know 
a priori

If everything is Lipschitz, h is a   -robust CBF, the 
dynamics residuals belong to an RKHS, and data 
sampling is at least this fast: 

Then the system is safe with a probability 

Theorem: Recovering Safety Feasibility [10]

[10] Capone, Cosner, et al. Learning safe control via on-the-fly bandit exploration. ICML, 2025.  



Learning Error

Perfect controller 

imitation on data

Infeasible Safety

The CBF inequality is 

feasible:

Real-World Safety

Model Error

The true dynamics are 

known:

Measurement Error

The true state is 

known:

Key assumptions, one at a time:



Safety with Bounded Measurement Uncertainty

Adding measurement uncertainty

[11] Dean, Taylor, Cosner, et. al. Guaranteeing safety of learned perception modules via measurement-robust control barrier functions. CoRL, 2020. 

Theorem: Measurement Robust CBFs [11]

safety

Worst-case bound

Lipschitz Bounds

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=9XSMo-AAAAAJ&citation_for_view=9XSMo-AAAAAJ:u5HHmVD_uO8C
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=9XSMo-AAAAAJ&citation_for_view=9XSMo-AAAAAJ:u5HHmVD_uO8C
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=9XSMo-AAAAAJ&citation_for_view=9XSMo-AAAAAJ:u5HHmVD_uO8C


[RC2] Cosner, et al. Measurement-Robust Control Barrier Functions: Certainty in Safety with Uncertainty in State. IROS, 2021.



Learning Error

Perfect controller 

imitation on data

Infeasible Safety

The CBF inequality is 

feasible:

Real-World Safety

Model Error

The true dynamics are 

known:

Measurement Error

The true state is 

known:

Key assumptions, one at a time:



Error in Imitation Learning

Increasingly popular in robotics

Errors in imitation/generalization 

can cause safety failures

Goal: 

     transfer safety from the robustified expert 

     to learned end-to-end controller

``

Sensor Output
Learned Controller

Expert 

Controller

Robust Safety Filter

``
Imitation Learning

Guarantee Transfer

[12] Fu, et al. Mobile ALOHA: Learning bimanual mobile manipulation with low-cost whole-body teleoperation. CoRL, 2024. 

[12]



Error in Imitation Learning

Thm: Transferring Safety Guarantees [13]

If the expert controller is robustly safe, the 
learned controller is Lipschitz, and data is 
sufficiently dense on the safe set boundary, 

then the closed-loop system with the learned 
controller is safe. 

Learned controller: images to torques

Lipschitz constants

& worst-case bounds

Dense Sampling on

[13] Cosner, et al. End-to-end imitaiton learing with sfaety guarantees using CBFs. CDC, 2022. 
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Perfect controller 

imitation on data

Infeasible Safety

The CBF inequality is 

feasible:

Real-World Safety

Model Error

The true dynamics are 

known:

Measurement Error

The true state is 

known:

Key assumptions, one at a time:



Synthesizing CBFs

Real-world System



Synthesizing CBFs

Leverage the hierarchical structure of robotic systems:

Real-world System

Reduced-Order 

Planner

[14] Lee, et al. Geometric tracking control of a quadrotor UAV on SE(3). CDC, 2010.

[15] Buchli, et al. Compliant quadruped locomotion over rough terrain. IROS, 2009.

[16] Radosavovic, et al. Real-world humanoid locomotion with reinforcement learning. Science Robotics, 2024. 

Tracking Controller



• “Fast enough” for 

• Key idea: 

Synthesizing CBFs

[17] Molnar, Cosner, et al. Model-Free Safety Critical Control for Robotic Systems. RAL, 2021.

[18] Cohen, Cosner, et al. Constructive Safety-Critical Control: Synthesizing CBFs for Partially Feedback Linearizable Systems. CSL, 2024. 

[19] Bahati, Cosner, et al. Control Barrier Function Synthesis for Nonlinear Systems with Dual Relative Degree. CDC, 2025. 

The simple model can be used to guarantee safety, 

if the true system tracks it fast enough. 

Theorem: Model-Free CBF[17, 18, 19]

safety

requirement
tracking

metric

Safety decay 

must be slower 

than tracking



GILTER VIDEO

[19] Bahati, Cosner, et al. Control Barrier Function Synthesis for Nonlinear Systems with Dual Relative Degree. CDC, 2025. 

Presentation at this CDC!
Session: Constrained 

Control II
Time: Friday, 5:15pm
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Learning Error

Perfect controller 

imitation on data

Infeasible Safety

The CBF inequality is 

feasible:

Real-World Safety

Model Error

The true dynamics are 

known:

Measurement Error

The true state is 

known:

Key assumptions:

d

• Worst-case over-approximations

• Lipschitz bounds

• Dense sampling near boundary

• Stability rate

Robustification Techniques



Theorem: Tunable Robust CBF [20]

 Well-Defined Safety

The CBF inequality is 

feasible:

Real-World Safety

Perfect Model

The true dynamics are 

known:

Perfect Measurement

The true state is known:

[20] Cosner, et al. Safety-aware preference-based learning for safety-critical control. L4DC, 2022. 

achieves safety even when these assumptions are violated:

Theorem: Tunable Robust CBF [RC6]

 

renders       safe under bounded state and dynamics 

uncertainty using a reduced-order model. 

My solution:



Combine Robustness Methods

Enforce safety with:

Introduces conservatism:

Speed 
Limit: 

0

Safe, but 

sacrifices 

performance

[RC6] Cosner, et al. Safety-aware preference-based learning for safety-critical control. L4DC, 2022. 

achieves safety under realistic uncertainty.

Theorem: Tunable Robust CBF [20]

Goal:

Achieve robust safety guarantees

Rethink Our Goal:

Achieve safety alongside performance

[20] Cosner, et al. Safety-aware preference-based learning for safety-critical control. L4DC, 2022. 



Should we throw away our theory? Theory provides the foundation on 

which we can build useful systems

We can’t prove everything especially 

since 

the best solutions won’t be general 

and will leverage problem structure, 

but theory points in the direction of 

success

“All models are wrong, but some are useful.”

    – George Box

Super safe

but incapable

Performant 

but unsafe

Ideal 

behavior?

Theory reveals relevant tuning dials Theory reveals important system characteristics

d

• Worst-case bounds:

• Lipschitz constants 

• Dense sampling

• Stability rate

Robustification Techniques

No! Use theory to guide learning-based performance.
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Theory provides the foundation on 

which we can build useful systems

We can’t prove everything especially 

since 

the best solutions won’t be general 

and will leverage problem structure, 

but theory points in the direction of 

success

“All models are wrong, but some are useful.”

    – George Box

Super safe

but incapable

Performant 

but unsafe

Ideal 

behavior?

Theory reveals relevant tuning dials Theory reveals important system characteristics

d

• Worst-case bounds:

• Lipschitz constants 

• Dense sampling

• Stability rate

Robustification Techniques

Theory-driven, learning-based performance



Theory Reveals Tuning Knobs

Choose parameters for preferred behavior 
instead of assumed bounds

Method: 

• Preference-Based Learning

• Safety-Aware Region of Interest Sampling

• Learn from sparse, noisy user feedback 

Assumption Bounds

Robustness Performance

Preferred Behavior

[20] Cosner, et al. Safety-aware preference-based learning for safety-critical control. L4DC, 2022. 



Better Tuning: Preference-Based Learning

[20] Cosner, et al. Safety-aware preference-based learning for safety-critical control. L4DC, 2022. 

37 Iterations of Preference-Based Learning
Subject:

Leverage Data

to Improve
Deterministic 

Guarantees



Online CBF synthesis from vision data
[20] Cosner, et al. Safety-aware preference-based learning for safety-critical control. L4DC, 2022. 



Theory-driven, learning-based performanceTheory provides the foundation on 

which we can build useful systems

We can’t prove everything especially 

since 

the best solutions won’t be general 

and will leverage problem structure, 

but theory points in the direction of 

success

“All models are wrong, but some are useful.”

    – George Box

Super safe

but incapable

Performant 

but unsafe

Ideal 

behavior?

Theory reveals relevant tuning dials Theory reveals important system characteristics

d

• Worst-case bounds:

• Lipschitz constants 

• Dense sampling

• Stability rate

Robustification Techniques



Following theory’s intuition

Iteratively: 

1. Run experiment

2. Compare model with reality

3. Update constraint

[21] Csomay-Shanklin*, Cosner*, Dai*, et al. Episodic learning for safe bipedal locomotion with CBFs and PSSf. L4DC, 2021. 
Updated Error Model

Run 

Experiment

Compare 

Model and 

Reality

Update 

Constraint

Follow intuition from robust theory:

• Learn residuals and regularize weights to 
reduce Lipschitz constants

• Run iteratively to collect data near boundary d

• Worst-case over-approximations

• Lipschitz bounds

• Dense sampling near boundary

Robustification Techniques



[21] Csomay-Shanklin*, Cosner*, Dai*, et al. Episodic learning for safe bipedal locomotion with CBFs and PSSf. L4DC, 2021. 



DT Control Barrier Function

Safe set

Following theory’s intuition

Problem setting: residual learning on a system 
with more complicated uncertainty 

• Unknowns: bottle state and mass

• Safety: don’t touch the ground

• Learn: drone state → disturbance

This learning problem isn’t well posed!

• System is chaotic, infinite DoF

• No one-to-one mapping

New Paradigm!

Stochastic uncertainty
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Switch discrete time system with stochastic uncertainty:

Continuous Time CBF Discrete Time CBF

Switching to Risk-based guarantees 

Why not just enforce  

Safety goal: 

 Bound Risk of Failure 

 Over a Finite Horizon

Safety goal: 

 Forward Invariance



DCBF Guarantees

[22] Ville. Etude critique de al notion de collectif. 1939.

[23] Freedman. On tail probabilities for martingales. 1975.

[24] Cosner, et al. Robust safety under stochastic uncertainty with discrete-time control barrier functions. RSS, 2023.

[25] Kushner. Stochastic stability and control.1967

[26] Cosner, et al. Bounding Stochastic Safety: Leveraging Freedman’s Inequality  with Discrete-Time Control Barrier Functions. LCSS, 2024. 

Lemma: Ville’s Inequality [22]

If          is a nonnegative supermartingale, then 

for any 

Theorem: Ville’s DCBFs [24,25]

Assume: is upper-bounded by 

Lemma: Freedman’s Inequality [23]

If          is a martingale with 

then, for any 

Theorem: Freedman’s DCBFs [26]

Assume:

Lower-bounded uncertainty: 

 

Bounded variance:

DCBF: 

Super Martingale:



Stochastic DCBFs Guarantees

Connections to stochastic process theory

Failure probability is governed by:

• the initial condition:

• the horizon length: K

• distribution information:

• the safety decay rate:

Theorem: Stochastic Safety [24, 26]

Theorem: Freedman’s DTCBFs [RC11]

[24] Cosner, et al. Robust safety under stochastic uncertainty with discrete-time control barrier functions. RSS, 2023.

[26] Cosner, et al. Bounding Stochastic Safety: Leveraging Freedman’s Inequality  with Discrete-Time Control Barrier Functions. LCSS, 2024. 

Theorem: Ville’s DTCBFs [RC10, RC11]
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Enforcing Stochastic Safety

[27] Taylor, Dorobantu, Cosner, et al. Safety of Sampled-Data Systems with CBFs via  Approximate Discrete Time Models. CDC, 2022. 

Jensen’s Inequality

Learning (Generative Modeling)

Sampled-Data Approximations

Stochastic  DCBF  Constraint

Theoretical

Practical

How do we enforce this constraint in practice? 

† This is convex in      if     is concave, the true continuous-time system is control affine, and      

is the Runge-Kutta approximation of the appropriate order [RC12].



Robot in 

the Real World

Online Risk-Informed Optimization (ORIO) Controller:

Enforcing Stochastic Safety

Conditional VAE DT Control Barrier Function

Safe set

[28] Cosner, et al. Generative Modeling of Residuals for Real-Time Risk-Sensitive Safety with Discrete-Time Control Barrier Functions. ICRA 2024.  

[28]



Application

[24] Cosner, et al. Robust safety under stochastic uncertainty with discrete-time control barrier functions. RSS, 2023.

[26] Cosner, et al. Bounding Stochastic Safety: Leveraging Freedman’s Inequality  with Discrete-Time Control Barrier Functions. LCSS, 2024. 

[28] Cosner, et al. Generative Modeling of Residuals for Real-Time Risk-Sensitive Safety with Discrete-Time Control Barrier Functions. ICRA 2024.  

• Learned distribution with 

generative modeling

•  Enforce stochastic safety

Theorem: Stochastic Safety [24,26]

[28]





[29] Yang, Werner, Cosner, et al. SHIELD: Safety on Humanoids via CBFs In Expectation on Learned Dynamics. IROS, 2025. 



- Safety Criteria: 

 Avoid the dynamic obstacle 

and stay above the ground

• Onboard vision-based obstacle sensing

• Onboard compute

• Performance goal: stay at 

• Enforce:

in MPC controller

[30] Cosner, Bena, Ames. Unified MPC+CBF 

Control for Performant Safety: Mutual Benefits and 

Inherent Robustness Properties. TRO (submitted). 



[RC15] Cosner, Bena, Ames. Unified MPC+CBF 

Control for Performant Safety: Mutual Benefits and 

Inherent Robustness Properties. TRO (submitted). 



Planning also lets us include more geometric 
awareness

[30] Bena, Bahati, Werner, Cosner, et al. Geometry-aware predictive safety filters on humanoids: From PSFs to   

        CBF-constrained MPC. Humanoids, 2025. 
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Conclusion

Contributions:

• Robust theoretical safety guarantees

• Theory-guided machine learning for safe performance 

• Safety with tunable risk-based guarantees

Key Takeaways: 

• Theoretical guarantees elucidate key characteristics

• Formal methods for safety + machine learning for 
performance

Naïve 

Idealized Approach

Defining 

Safety

Tuning for 

Performance

Robust 

Safety

Robust Methods

Risk-based 

Guarantees

Risk + 

Performance

Risk-Based Control 
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