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There’s still lots to be done!

Real-world safety 1s hard: s K
* Learned controllers * Multiagent scenarios Y- o }
* Complex environments ¢ Sim-to-real gaps | ' '

* Noisy sensors * The list is endless ... - + ] Th— a
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Several methods have emerged

System Model:
x = f(x) + g(x)u
X(to) — X0

Safety as forward-invariance

Definition: Set Invariance and Safety

If x(tg) € C = x(t) € C, Vt > 0,
then C 1s a forward-invariant set and safe.

Common methods:
o Hamilton Jacobi methods!!!
o State constraints in model predictive control (MPC)?]
o Control Barrier Functions!3!

[1] Bansal, et al. Hamilton-Jacobi reachability: A brief overview and recent advances. CDC, 2017.
[2] Borrelli, et al. Predictive control for linear and hybrid systems. Cambridge University Press, 2017.
[3] Ames, et al. Control barrier function based QPs for safety critical systems. TAC, 2017.



Defining Safety: Control Barrier Functions

User-Defined Safe Set: C = {x € R" | h(x) > 0}

Theorem: CBF Safety [3] }
For a > 0,
dh
g(x, u) > —ah(x) —> safety. 7
Growing popularity:

* 4710 publications since introduced in 2014
» Several conference sessions and workshops

[3] Ames, et al. Control barrier function based quadratic programs for safety critical systems. TAC, 2017.



Defining Safety: CBF Safety Filter

CBFs are often used 1n safety filters:

Safety definition:

User command:
System model:

System state:

~

Safety Filter:
Knom (1), if Kpom () is safe
gh(x = sh(x)—ah(x)—knom
Ko (1) + LEt =ty S —eent - else,

o

J

Keate (X,1) |

[4] Gurriet, et al. Towards a Framework for Realizable Safety Critical Control through Active Set Invariance. ICCPS, 2018.
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dh

g x,k(x)) > —a(h(x)) = safety

Sg?Way

- X0.25 Speed

BS-QP Controller



Should we throw away our theory?

No! But we should reexamine our assumptions:

The true dynamics are The true state is
known: known:
% = £(x) + g(x)u % =x
Perfect controller The CBF inequality is
imitation feasible:

k(x) = ko(I(x)) h(x,u) > —a(h(x))
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Real-World Safety

Key assumptions, one at a time:

Model Error

The true dynamics are
known:

x = f(x) + g(x)u




Safety with Bounded Dynamics Uncertainty

Adding bounded disturbances, ||d(?)|| <o

x = f(x) + g(x)(ui-d(1))

R™ | h(x
Expanded Worst-Case Safe Set: <C {)‘EXEE an! | gl() ) >O} v(4,m)}

>

Theorem: Input-to-State Safe CBF [9] 1 n
oh ’ I
— 0% \J
renders Cs forward invariant for 7(9, 1) = 1 I

[9] Kolathaya, et al. Input-to-State Safety with Control Barrier Functions. CSL, 2018.



Learning Dynamics Online

Learn dynamics residuals f(x) — f(x), g(x) — g(x) via online sampling

Keep robust constraint feasible:

Oh ~ ~ €
Lower Bound;_s) (a—(f(x) +g(x)u) | > —a(h(x)) + 5
X
Theorem: Recovering Safety Feasibility [10] P teasible
If everything is Lipschitz, /4 is a €-robust CBF, the /,/’/ constraint
dynamics residuals belong to an RKHS, and data - fonsible
sampling 1s at least this fast: y y -
€ |\\ C ,'
At S T I e iy B 7’
2£a£h£3‘gNmaX(5) \l I =
Then the system 1s safe with a probability 1 — §. - ,./;’/’
unsafe -

[10] Capone, Cosner, et al. Learning safe control via on-the-fly bandit exploration. ICML, 2025.



Real-World Safety

Key assumptions, one at a time:

Measurement Error

The true state 1s
known:

X =X




Safety with Bounded Measurement Uncertainty

Adding measurement uncertainty  ||x —X|| < e

h(X,u)— p(X,u)[> —ah(x) ——> safety

Lipschitz Bounds

[11] Dean, Taylor, Cosner, et. al. Guaranteeing safety of learned perception modules via measurement-robust control barrier functions. CoRL, 2020.


https://scholar.google.com/citations?view_op=view_citation&hl=en&user=9XSMo-AAAAAJ&citation_for_view=9XSMo-AAAAAJ:u5HHmVD_uO8C
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=9XSMo-AAAAAJ&citation_for_view=9XSMo-AAAAAJ:u5HHmVD_uO8C
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=9XSMo-AAAAAJ&citation_for_view=9XSMo-AAAAAJ:u5HHmVD_uO8C
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Real-World Safety

Key assumptions, one at a time:

Learning Error

Perfect controller
imitation on data

k(x) = kq(I(x))




Error in Imitation Learning

Increasingly popular in robotics

Errors in imitation/generalization
can cause safety failures

152 Pan
OROMOUS)

[12] Fu, et al. Mobile ALOHA: Learning bimanual mobile manipulation with low-cost whole-body teleoperation. CoRL, 2024.

Goal:

transfer safety from the robustified expert
to learned end-to-end controller

Sensor Output

7|

Learned Controller

nRY

Expert
Controller

k(x)

Robust Safety Filter
h(X, l_l) - ()O(Xa l.l)
> —a(h(x))

A\ 4

Imitation Learning

LOSS(ksafe (X) Ko (I))

Guarantee Transfer




Error in Imitation Learning

Expert Controller Learned Controller

Lipschitz constants
& worst-case bounds

0.50 4

0.25 1

@ 0.00 1

=% > p/> > »
] e

Thm: Transferring Safety (uarantees [13]
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If the expert controller is robustly safe, the
learned controller is Lipschitz, and data is
sufficiently dense on the safe set boundary, 9C,

.:50 0.'75 1.60 —ll.OO -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

CBF Values
for Learned Controller

Dense Sampling on

oC

then the closed-loop system with the learned
controller 1s safe.

Learned controller: images to torques

/

[13] Cosner, et al. End-to-end imitaiton learing with sfaety guarantees using CBFs. CDC, 2022. 0.0 02 0.4 [ofs ] 08 10
Time [sec




Real-World Safety

Key assumptions, one at a time:

Infeasible Safety

The CBF inequality is
feasible:

h(x,u) > —a(h(x))




Synthesizing CBFs

{ Real-world System J




Synthesizing CBFs

Leverage the hierarchical structure of robotic systems:

Reduced-Order “y

T Planner H I
e A ————— .. S !
VdeS ,loTTETEEETETS N s TTTEEEE TS N ,loTTETEEETEETS N
5 I \ ,’ \ ,/ \I
Tracking Controller ! ¥ 15 1) !
:kdiff.ﬂat (X, Vdes) [14]: ! kIDQP (Xa Vdes) : | kRL (X, Vdes) :
| ! ! |
........................................................................................................................................... ::.'i'.:
1 I 1 I 1 I
: | ! 1 ! |
! 1 ! 1 ! 1
uy ¥ ‘ ¥ !
Real-world System ! X m 1 |

1

I\\ /’ I\\ o ‘ ’, I\\ ”

___________

[14] Lee, et al. Geometric tracking control of a quadrotor UAV on SE(3). CDC, 2010.
[15] Buchli, et al. Compliant quadruped locomotion over rough terrain. IROS, 2009.
[16] Radosavovic, et al. Real-world humanoid locomotion with reinforcement learning. Science Robotics, 2024.



Synthesizing CBFs

Quadruped:

safe velocity via
single integrator

Theorem: Model-Free CBFLL7. 18, 19]

The simple model can be used to guarantee safety,
if the true system tracks it fast enough.

* “Fast enough” for hg(x) > -

Safety decay
must be slower

* Key 1dea: h(x)

|
>
-}
)

|
~

N—— than tracking
safety tracking Drone:
: . safe velocity via
requirement metric ‘ single integrator

[17] Molnar, Cosner, et al. Model-Free Safety Critical Control for Robotic Systems. RAL, 2021.
[18] Cohen, Cosner, et al. Constructive Safety-Critical Control: Synthesizing CBFs for Partially Feedback Linearizable Systems. CSL, 2024.
[19] Bahati, Cosner, et al. Control Barrier Function Synthesis for Nonlinear Systems with Dual Relative Degree. CDC, 2025.



Case Study: Unicycle

Presentation at this CDC!
Session: Constrained
Control Il
Time: Friday, 5:15pm
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[ [19] Bahati, Cosner, et al. Control Barrier Function Synthesis for Nonlinear Systems with Dual Relative Degree. CDC, 2025. ]
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Real-World Safety

Key assumptions:

The true dynamics are The true state is
known: known:
% = £(x) + g(x)u %= x
Perfect controller The CBF inequality is
imitation on data feasible:

k(x) = ko(I(x)) h(x,u) > —a(h(x))




Real-World Safety

Key assumptions:

The true dynamics are
known:

x = f(x) + g(x)u

The true state is
known:

X =X

Perfect controller
1mitation on data

k(x) = kq(I(x))

The CBF inequality is
feasible:

h(x,u) > —a(h(x))

-

Robustification Techniques

* Worst-case over-approximations
[d(#)]oo <0
* Lipschitz bounds

fe -t |

5
i

< .”/

0 Ws 1 18 3 25 3 a5 4

* Dense sampling near boundary
Vx € 0C dxp € D
s.t. ||[x —xpl| <e

* Stability rate

Vix) < -AV(x)




Real-World Safety

Theorem: Tunable Robust CBF [20]

@
0x

achieves safety even when these assumptions are violated:

Perfect Model Perfect Measurement [l Well-Defined Safety

(/f(ﬁ) + @(ﬁ)u) — robustification(a, b, ¢, X, u) > —a(h(X))

The true dynamics are The true state is known: The CBF inequality is
known: feasible:
% = £(x) + g(x)u % =x (x, 1) > —a(h(x))

[20] Cosner, et al. Safety-aware preference-based learning for safety-critical control. LADC, 2022.



Goal:
Achieve robust safety guarantees

Rethink Our Goal:
Achieve safety alongside performance

oh
0x
achieves safety under realistic uncertainty.

(/f(ﬁ) + g(ﬁ)u) — robustification(a, b, ¢, X, u) > —a(h(X)) <4

[20] Cosner, et al. Safety-aware preference-based learning for safety-critical control. LADC, 2022.

4x speed



Should we throw away our theory?

No! Use theory to guide learning-based performance.

Theory reveals relevant tuning dials | Theory reveals important system characteristics

Ideal : : :
behavior? Robustification Techniques

¥ e  Worst-case bounds: [|[d(t)]|ec <6

* Lipschitz constants
1£(x) = £(y)Il < Lellx -y

* Dense sampling

\ Vx € OC 3xp € D s.t. [|[x —xp|| < e

Super safe Performant * Stability rate V(x) < -AV(x)
but incapable but unsafe
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Theory-driven, learning-based performance

Theory reveals relevant tuning dials | Theory reveals important system characteristics

Ideal : : :
behavior? Robustification Techniques

¥ e  Worst-case bounds: [|[d(t)]|ec <6

* Lipschitz constants
1£(x) = £(y)Il < Lellx -y

* Dense sampling

| \ Vx € OC 3xp € D s.t. [|[x —xp|| < e

Super safe Performant * Stability rate V(x) < -AV(x)
but incapable but unsafe




Theory Reveals Tuning Knobs

: 4 . )
Choose parameters for preferred behavior Assumption Bounds
instead of assumed bounds T ] e (T
8]’), km:i: f(x) + g(x)u X=x le;il)lzlc“) > —a(h(x))
. (f(i) - @(i)u) — robustification a b c.p "@(h \_ J
Method: 4 Preferred Behavior 2

* Preference-Based Learning

: : Rob Perf
* Safety-Aware Region of Interest Sampling

* Learn from sparse, noisy user feedback

. /

[20] Cosner, et al. Safety-aware preference-based learning for safety-critical control. LADC, 2022.



Better Tuning: Preference-Based Learning

: 37 Iterations of Preference-Based Learning
Subject:

Deterministic |4 p ‘ Leverage Data §
Guarantees [ WL to Improve

h(x)
| e
e
- 1

Indoor Testing RN T Indoor Testing

Worst-Case Approximations " Iteration 37 Best Action

[20] Cosner, et al. Safety-aware preference-based learning for safety-critical control. LADC, 2022.



Onboard Camera

Online CBF synthesis from vision data

[20] Cosner, et al. Safety-aware preference-based learning for safety-critical control. LADC, 2022.

g FiEa Tea R ~ 8x speed




Theory-driven, learning-based performance

Theory reveals relevant tuning dials | Theory reveals important system characteristics

Ideal : : :
behavior? Robustification Techniques

¥ e  Worst-case bounds: [|[d(t)]|ec <6

* Lipschitz constants
1£(x) = £(y)Il < Lellx -y

* Dense sampling

| \ Vx € OC 3xp € D s.t. [|[x —xp|| < e

Super safe Performant * Stability rate V(x) < -AV(x)
but incapable but unsafe




Following theory’s intuition

Follow intuition from robust theory: Robustification Techniques

* Learn residuals and regularize weights to "+ Worst-case over-approximations
reduce Lipschitz constants Id(t) | < 6
efﬁEX; = f((x)) - ﬂ(;‘>), Loss += [|0] + |4 . Lipschitz bounds
€z 4(X) = g(X) — g(x
| . [£(x) — £(y)||
* Run 1iteratively to collect data near boundary < /
Lellx—yll |/~
Run Compare (L X .
: Model and - :
Experiment Reali * Dense sampling near boundary
eality <
Vx € dC dxp € ®
t|x — <
Update st x—xpll < ¢
Constraint

[21] Csomay-Shanklin*, Cosner*, Dai*, et al. Episodic learning for safe bipedal locomotion with CBFs and PSSf. L4DC, 2021.



Episode 0

d [21] Csomay-Shanklin*, Cosner*, Dai*, et al. Episodic learning for safe bipedal locomotion with CBF's and PSSf. LADC, 2021.



New Paradigm!

Following theory’s intuition Stochastic uncertainty

- J

— T = —=

Problem setting: residual learning on a system
with more complicated uncertainty

 Unknowns: bottle state and mass

 Safety: don’t touch the ground

e Learn: drone state =2 disturbance

dbottle (Xdrone) i'
\ uuuuuuuuuuuuuuuuu =0 seconce

4 This learning problem 1sn’t well posed!
* System 1s chaotic, infinite DoF /
* No one-to-one mapping

\ dbottle(Xdronea Xbottley Xenvironments + « - )/
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Switching to Risk-based guarantees

Switch discrete time system with stochastic uncertainty:

/Continuous Time CBF\

x =f(x) +g(x)u+d

dh
E(X’ u) > —ah(x)

Safety goal:
Forward Invariance

\_ /

»

/ Discrete Time CBF \

X1 = F(xp,ug) + dg
E[h(F(x,u)) +d | x¢| > ph(x)

Safety goal:
Bound Risk of Failure

k Over a Finite Horizon /




DCBF Guarantees

h(x) is upper-bounded by M > 0
Lemma: Ville s Inequality ==

Lemma: Freeaman’s Inequality =~

Theorem: Freedman’s DCBFs [2€]

Theorem: Ville’s DCBFs [24:2°]

[22] Ville. Etude critique de al notion de collectif. 1939.

[23] Freedman. On tail probabilities for martingales. 1975.

[24] Cosner, et al. Robust safety under stochastic uncertainty with discrete-time control barrier functions. RSS, 2023.

[25] Kushner. Stochastic stability and control.1967

[26] Cosner, et al. Bounding Stochastic Safety: Leveraging Freedman s Inequality with Discrete-Time Control Barrier Functions. LCSS, 2024.



Stochastic DCBFs Guarantees

Connections to stochastic process theory

Failure probability 1s governed by:
“ 1M1t 4 . : [24, 26]
e the initial condition: xq Theorem: Stochastic Safety

* the horizon length: K Stochastic DCBFs
e distribution information: o, ®, p(d) — bounded risk of failure.
* the safety decay rate: p € (0, 1)

[24] Cosner, et al. Robust safety under stochastic uncertainty with discrete-time control barrier functions. RSS, 2023.
[26] Cosner, et al. Bounding Stochastic Safety: Leveraging Freedman s Inequality with Discrete-Time Control Barrier Functions. LCSS, 2024.
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Enforcing Stochastic Safety

How do we enforce this constraint in practice?

Theoretical
Stochastic DCBF Constraint h(F(x,u)+d) | x| > ph(x)
Jensen’s Inequality )\
Lﬁr A(F (e, w) + Eldfx]) + 2 men O o) > phiso
Learning (Generative Modeling) i\ 0}
mMaxy Amax

o h(E(x, 1) H 1o(d]x)) + 5 tr(X(dlx)) = ph(x)

Sampled-Data Approximations
max{ Amax, 0}

D n(Fri(x,u) + o(d]x)) + tr(Sg(d|x)) > ph(x)7

2

Practical

[27] Taylor, Dorobantu, Cosner, et al. Safety of Sampled-Data Systems with CBFs via Approximate Discrete Time Models. CDC, 2022.



Enforcing Stochastic Safety

Online Risk-Informed Optimization (ORIO) Controller:

Robot in
the Real World

X1 = F(xp,ug) + dg

28]

Conditional VAE
(p(s.0)(dilxe)| ~ (D (x)

DT Control Barrier Function

arg n}nin [[u = Knom (t)[? Safe set
uckR™ h(x) > 0
s.t. h(Frk(x,u) + py(d|x))
)\max
— S (5 ()

[28] Cosner, et al. Generative Modeling of Residuals for Real-Time Risk-Sensitive Safety with Discrete-Time Control Barrier Functions. ICRA 2024.



Application

e Learned distribution with
generative modeling

* Enforce stochastic safety

N

Theorem: Stochastic Safety [24.26]

Stochastic DCBFs
— bounded risk of failure. [28]

[24] Cosner, et al. Robust safety under stochastic uncertainty with discrete-time control barrier functions. RSS, 2023.
[26] Cosner, et al. Bounding Stochastic Safety: Leveraging Freedman s Inequality with Discrete-Time Control Barrier Functions. LCSS, 2024.
[28] Cosner, et al. Generative Modeling of Residuals for Real-Time Risk-Sensitive Safety with Discrete-Time Control Barrier Functions. ICRA 2024.
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| " e Safety Criteria:
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me Avoid the dynamic obstacle
=P ’

2\ = 35 Stay above the ground

Onboard vision-based obstacle sensing
Onboard compute

Performance goal: stay at S

Enforce: E[ h(Xp11k+1) | % | = ah(Xgk) — ¢y
in MPC controller
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[30] Bena, Bahati, Werner, Cosner, et al. Geometry-aware predictive safety filters on humanoids: From PSFs to
CBF-constrained MPC. Humanoids, 2025.
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Conclusion

Contributions:
* Robust theoretical safety guarantees
* Theory-guided machine learning for safe performance

» Safety with tunable risk-based guarantees

Key Takeaways:
* Theoretical guarantees elucidate key characteristics

* Formal methods for safety + machine learning for
performance

Case Study: Unicycle
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