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01,09,...,0N (scenarios, i.i.d. sample)



Example: data-driven (scenario) robust optimization
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Example: data-driven (scenario) robust optimization

data H = 6™ =solution to
0; = f(6,0;) <0 min ¢(f)
constraint 0ce
st (6,0 <0
optimization r=1,....N
1 direction

data-driven
robust H, control



Example: optimization with constraints relaxations

data H = 6™ =solution to
J.NIT
% = f(6,0:) <0 min_ o(0) +p> ¢
I 0€0.5; >0 .
constraint i—1

s.T. f(9~5%) < 5@1
i=1....N
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Example: optimization with constraints relaxations

H = 6™ =solution to

N
min  ¢(0) + p Z &i
1=1

0€0,5: =0

st [(0,8) < ¢
i=1,....N

Support Vector methods
for reachability analysis



Example: classification

data
0; = (u;,y;

(ud,,y ) ‘H = Neural Network
u; € R classifier trained via

y; € {red, blue} an SGD-based training
algorithm




A lesson from machine learning

Which is the data-driven decision scheme for the problem at
hand?

Difficult to say a-priori without incurring in over-conservatism
... a blend of approximate knowledge and heuristics, often in

various attempts (hyperparameters tuning)

No limits in exploration, but some guidance is needed...



A lesson from machine learning

Which is the data-driven decision scheme for the problem at
hand?

Difficult to say a-priori without incurring in over-conservatism
... a blend of approximate knowledge and heuristics, often in
various attempts (hyperparameters tuning)

No limits in exploration, but some guidance is needed...

= SCENARIO APPROACH: a tool to provide accurate and
rigorous certification of the actual performance of

the explored decisions — final decision
\, selection

... when is it possible? dependable
utilization of it



The risk of a decision

‘H is inappropriate for a new ¢

interaction between decision and environment

E.g., a new constraint is violated by H
a new terminal state is outside H

a new |/O pair is misclassified by H




The risk of a decision

R(H)=P {’H is inappropriate for a new 5}

Risk = out-of-sample probability of inappropriateness
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The risk of a decision

R(H) = ? {’H is inappropriate for a new 5}

Risk = out-of-sample probability of inappropriateness

E.g., ? {a new constraint is violated by . }
? { a new terminal state is outside 7 }

? {a new 1/0 pair is misclassified by H }

Issue: [P is not available...



Main goal

= assess R(H) from data, the same used for design




Main goal

= assess R(H) from data, the same used for design

Why not using new data for validation:

* using some data for testing rather than designing is a
waste of information!

e scenarios (data) are often limited resources (collecting
data can be time-consuming or burdensome, involving
a monetary cost)

* in many contexts validation is not necessary... data can
play well a double role!



Risk assessment via sample compression

_ . optimization
COI’hpFESSIOﬂ function direction

H,((Slj...,(SN):(S' ---:53'

117 k

map extracting a subsample
from a sample of scenarios

Preference
H’((Sla' . :I(SN) CSC (51:
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Risk assessment via sample compression

. . optimization
Compressmn function direction

H,((Slj...,(SN):(S' ---:53'

117 k

map extracting a subsample
from a sample of scenarios

Preference
H(51,...,5N)§S§(51, ;5N)
K(S) = k(01,...,0N)



Risk assessment via sample compression

_ . optimization
Compression function direction
02 "
H,((Slj...,(SN) — 52;1,...,5%
map extracting a subsample
from a sample of scenarios
------------------------------------------------------------- >
Coherence g

a new scenario for which H is inappropriate is added

J

the compression must change



Risk assessment via sample compression

. . optimization
Compressmn function direction

0 %

K(01y.. 3 ON) = 045,05, /V
map extracting a subsample ‘
from a sample of scenarios V

Coherence

a new scenario for which H is inappropriate is added

J

the compression must change



Risk assessment via sample compression

_ . optimization
COI’hpFESSIOﬂ function direction

0 %

R(O1se oy ON) = Oiyoen Biy /V

map extracting a subsample
from a sample of scenarios

Coherence

a new scenario for which H is inappropriate is added

J

the compression must change



The main result in a nutshell

Risk: R(H) = R(H(d1,...,n)) | random
|

Complexity: 7= |k(d1,...,0N)] variables

size of compressed set
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\

Risk: R(H) = R(H(d1,...,n)) | random

Complexity: m™ = |H,(51, . jcﬁN)| variables

o

Under preference and coherence, the joint distribution of risk
and complexity is concentrated around/below R(H) = 7/N
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The main result in a nutshell

Risk:

R(H) = R(’H(él, . ,5N))
Complexity: ™= |H?(513 KR :5N)|

\

random
variables

o

Under preference and coherence, the joint distribution of risk
and complexity is concentrated around/below R(H) = 7/N

R(H)
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R(#) can be accurately

estimated from! 7,
\II

\

observable!




Main result (cont’d)

Theorem (with M. Campi)

Assume preference and coherence

Choose B € (0,1) (confidence parameter)

Let ez(k),€Y(k) be the unique roots in (0,1) of polynomials

g (JZ) 1= 5% > (f‘) (L—om*

m=k

> (- £ (-

Then, irrespective of [P (distribution-free),

PN {61,...,05: €(m) <RH) <e’(m)} >1-p




Main result (cont’d)

> true with confidence 1 — 3

claim: er(m) < R(H) < € (m)



Main result (cont’d)

i > true with confidence 1 — 3

claim: er(m) < R(H) < GU(”T)

< -
<cIose each other even with finite N,

gap goes to zero as 1/\/17




Main result (cont’d)

claim: er(m) < R(H) < GU(’“')

> true with confidence 1 — 3

Complexity is a universal observable to
obtain very informative assessments of
the actual risk !

R(H) === not accessible

er, (), €” ()] &> accessible

accept/reject
the solution

make further decisions

compare various

“decisions”



Example: reachability analysis via SVDD

{ z(t+1) = fs((t), ws(t))

Goal (Arcak, Devonport, Dietrich, Tu) : construct a reachable
set S such that the terminal state x(T) lies in .S with a
prescribed probability

SVDD
| > S

hyperparameters

——————————————
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Example: reachability analysis via SVDD

{ z(t+1) = fs((t), ws(t))

Goal (Arcak, Devonport, Dietrich, Tu) : construct a reachable
set S such that the terminal state x(T) lies in S with a

Compression = Support Vectors

SVDD
| > S

hyperparameters

——————————————



Example: reachability analysis via SVDD

0% < R(H) < 1.9% 0% < R(H) < 1.9% 0% < R(H) < 2.8%
4.3% < R(H) < 11.2% 2.6% < R(H) < 8.5% 12.4% < R(H) < 22.7%



Example: reachability analysis via SVDD

4.3% < R(H) < 11.2% 2.6% < R(H) < 8.5% 12.4% < R(H) < 22.7%



Scenario Approach: range of applicability

Many decision schemes (all scenario optimization

@ schemes, many schemes in ML...) naturally satisfy
| compression properties... many yet to be discovered...

> However, many others do not... notably: SGD

preference
& coherence

data-driven
decision
schemes

risk can be
evaluated via
complexity




Scenario Approach: range of applicability

| Many decision schemes (all scenario optimization
\."./ schemes, many schemes in ML...) naturally satisfy
compression properties... many yet to be discovered...

. However, many others do not... notably: SGD

see also We(C02.4
?

Idea — the Pick-to-Learn (P2L) algorithm:

a meta-algorithm that builds on an existing data-driven
decision scheme as a block-box to induce the compression

properties



The Pick-to-Learn (P2L) algorithm

INPUT: scenarios 0y, 05, ..., 05 , decision algorithm £,

initial decision H,

------------------------------------------------------------------------------

Possibly, not linkable to any
meaningful compression

theory of the scenario approach
cannot be directly used to
evaluate the risk



The Pick-to-Learn (P2L) algorithm

INPUT: scenarios 9y, 0o, .

initial decision H,

Initialization: T =0, V = (64, ..

(TeT U )

V&V —9

Is H appropriate for
all scenariosin /' ?

.., 0pn , decision algorithm £,

'J(SN)J H:HO

YES

NO

(H=L(T)
/

|

[RETURN H, T}

5 = element in V for which H is most inappropriate



P2L: main features

P2L: 0¢,...,0y — H
—> new data-driven decision scheme £’
P2L: 01,...,0ny — T

—> compression function ' associated to £’



P2L: main features

P2L: 0¢,...,0y — H
—> new data-driven decision scheme £’
P2L: 01,...,0ny — T

—> compression function ' associated to £’

Theorem (with D. Paccagnan and M. Campi)

Preference and coherence hold true!

the risk of H = £/(d1,...,0x) can be assessed via
E:> the size of T’




Scenario Approach: range of applicability (cont’d)

preference
& coherence

% L

data-driven
decision
schemes

risk can be
evaluated via
complexity




Scenario Approach: range of applicability (cont’d)

P2L

preference
& coherence

data-driven
decision
schemes

risk can be
evaluated via
complexity




Scenario Approach: range of applicability (cont’d)

P2L

‘L ~ preference
x ~

Sa o & coherence
o

P2L uncovers a truly
broad domain of risk can be
application for the evaluated via
scenario approach’s complexity
statistical results in
risk certification




Thank you !
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